BLE Model Question Set with Solution

Subject: Mathematics
Class: VIII
F.M.: 100

Time: 3 hrs

Candidates are required to answer in their own words as far as practicable. The figures in the margin represent the full marks.

Attempt all the questions

$$
\text { Group "A" }[10 \times 1=10]
$$

1. a) Write the co-interior angle of $\Varangle \mathrm{BGH}$ from the given figure.
b) Find the area of a semi-circle with diameter 'd' cm.
2. a) Find the x-intercept of the line $A B$ in the given graph.

b) Write the bearing angle of NE in the given figure.
3. a) If $\mathrm{A}=\{0,4,8,12,18\}$ and $\mathrm{B}=\{0,6,12,18\}$ then find $\mathrm{A}-\mathrm{B}$.

b) Find the mode of given data: $2,3,5,7,3,11$
4. a) Factorise: $2 a^{2}-6 a b$
b) Write down 46000 in scientific notation.
5. a) Solve: $4 x>12$
b) What is the value of $2 x^{\circ}$?

$$
\text { Group "B" }[17 \times 2=34]
$$

6. a) Find the value of x from the given figure.

b) From given figure, Find the value of x and y.

c) In the given figure, if $\triangle \mathrm{PQR} \sim \Delta \mathrm{PMN}$ then find the length of PQ .

7. a) In the given figure, $A B=B C$ and $\Varangle B A D=\Varangle A B C$, prove that $\triangle A B D \cong \triangle A C B$.

b) If the area of circular pond is $144 \mathrm{~m}^{2}$, Find the radius of its base.
c) Draw a net of cube.
8. a) If $\mathrm{A}(6,8)$ and $\mathrm{B}(7,4)$ are any two given points, Find the distance between AB .
b) A tank having length, breadth and height $12 \mathrm{~m}, 10 \mathrm{~m}, 6 \mathrm{~m}$ respectively. How much petrol does it hold?
c) If $U=\{1,2,3,4 \ldots . .10\}, P=\{1,2,3,4,5\}$ and $R=\{4,5,6,7\}$ then find $P-(\overline{P \cap R})$
9. a) Convert the binary number (101110111$)_{2}$ into decimal number.
b) The monthly income of a family is Rs 30,000 . The ratio of the expenditure and saving is $4: 2$. Find the amount of expenditure and saving.
c) Find the median from the given data:

$$
10,30,20,40,50,20,60
$$

10. a) If $a+\frac{1}{a}=12$, find the value of $a^{3}+\frac{1}{a^{3}}$.
b) Find the value of: $\left(\frac{1}{64}\right)^{-1 / 6}$
c) Simplify: $\frac{3^{x+1}+3^{x}}{2 \times 3^{x}}$
11. a) Solve: $a^{2}-4 a=0$
b) Solve the given inequality and show in a number line. : $3 x+2 \leq 17$.

$$
\text { Group "C" }[14 \times 4=56]
$$

12. Construct a regular pentagon with a side 5 cm by using compass.
13. Verify experimentally that the sum of interior angles of a triangle is two right angles.(Two triangles of different size are necessary)
14. Plot the points $\mathrm{P}(2,7), \mathrm{Q}(3,3)$ and $\mathrm{R}(6,7)$ on graph paper. Find the co-ordinates of image of the point P, Q and R when P, Q and R are rotated through $+90^{\circ}$ about the origin $O(0,0)$ and show the image on the same graph paper.
15. In a group of 120 students, it was found that 80 students liked apple and 40 liked banana. If 20 of them liked both fruits then using Venn - diagram, find the number of students who did not like both fruits.
16. Simplify: $\frac{42}{\sqrt{28}}+\frac{60}{\sqrt{45}}-2 \sqrt{20}+2 \sqrt{175}$
17. If a cube has total surface area $150 \mathrm{~cm}^{2}$, Find the volume of a cube.
18. 15 men can do a piece of work in 80 days. How long will it take to complete the work by 10 men?
19. What sum of money amounts to Rs 8700 in 3 years at the rate of 24% per annum.
20. What is the price of a mobile whose market price is Rs 15,000 and 13% VAT was levied after allowing 20% discount on it?
21. Find the arithmetic mean from the following data:

x	2	4	6	8	10	12	14
f	5	3	4	3	7	3	4

22. Factorize: $(a+b)^{2}+11(a+b)+30$
23. Find H.C.F.: $x^{2}-5 x+6, x^{2}-6 x+5$ and $x^{2}-9$.
24. Simplify: Simplify: $\frac{1}{m-n}+\frac{1}{m+n}-\frac{2 m}{m^{2}+n^{2}}$
25. Solve graphically: $x+y=5, x-y=1$

THE END

Group "A"

[10 $\times 1=10$]

1. a) Write the co-interior angle of $\angle \mathrm{BGH}$ from the given figure.

Solution:
Here,
The co-interior angle of $\angle \mathrm{BGH}$ is $\angle \mathrm{DHG}$.

b) Find the area of a semi-circle with diameter 'd' cm .

Solution:

Here,
The area of semi-circle $=\frac{1}{2} \pi r^{2}=\frac{1}{2} \pi\left(\frac{d}{2}\right)^{2}=\frac{1}{8} \pi d^{2} \mathrm{~cm}^{2}$
2. a) Find the x-intercept of the line $A B$ in the given graph.

Solution:

Here,
The x -intercept of the line AB is -4 .
b) Write the bearing angle of NE in the given figure.

Solution:
Here,
The bearing of NE is 045°.

3. a) If $A=\{0,4,8,12,18\}$ and $B=\{0,6,12,18\}$ then find $A-B$.

Solution:
Here, $A=\{0,4,8,12,18\}$ and $B=\{0,6,12,18$

$$
\begin{aligned}
\mathrm{A}-\mathrm{B} & =\{0,4,8,12,18\}-\{0,6,12,18\} \\
& =\{4,8\}
\end{aligned}
$$

b) Find the mode of given data: $2,3,5,7,3,11$

Solution:

Here,
The required mode is 3 because it has highest frequency.
4. a) Factorize: $2 a^{2}-6 a b$

Solution:
Here,
$2 a^{2}-6 a b=2 a(a-3 b)$
b) Write down 46000 in scientific notation.

Solution:
Here, $46000=4.6 \times 10^{4}$
5. a) Solve: $4 x>12$

Solution:
Here,
$4 x>12$
or, $x>3$
b) What is the value of $2 x^{0}$?

Solution:
Here, $2 \mathrm{x}^{0}=2 \times 1=2$

Group "B" $\quad[17 \times 2=34]$

6. a) Find the value of x from the given figure.

Solution:
Here,

$3 \mathrm{x}-10^{\circ}+2 \mathrm{x}+15^{\circ}=180^{\circ} \quad$ [Being co-interior angles]
or, $5 \mathrm{x}+5^{\circ}=180^{\circ}$
or, $5 \mathrm{x}=175^{\circ}$
$\therefore \mathrm{x} \quad=\frac{175^{\circ}}{5}=35^{\circ}$
b) From given figure, Find the value of x and y.

Solution:

Here,

$\mathrm{x}+120^{\circ}=180^{\circ} \quad$ [Being linear pair]
or, $x=180^{\circ}-120^{\circ}$
$\therefore \mathrm{x}=60^{\circ}$
Again,
$y+3 y+x=180^{\circ}$ [Being the sum of angles of triangle]
or, $4 y+60^{\circ}=180^{\circ}$
or, $4 \mathrm{y}=120^{\circ}$
or, $\mathrm{y}=\frac{120^{\circ}}{4}$
$\therefore y=30^{\circ}$
c) In the given figure, if $\triangle \mathrm{PQR} \sim \Delta \mathrm{PMN}$ then find the length of PQ .

Solution:
Here,

$\mathrm{QR}=5 \mathrm{~cm}, \mathrm{PM}=4 \mathrm{~cm}$ and $\mathrm{MN}=2 \mathrm{~cm}, \mathrm{PQ}=$?
Now, $\triangle \mathrm{PQR} \sim \Delta \mathrm{PMN}$
So, $\frac{\mathrm{PQ}}{\mathrm{PM}}=\frac{\mathrm{QR}}{\mathrm{MN}}=\frac{\mathrm{PR}}{\mathrm{PN}} \quad$ [The corresponding sides of similar triangles are proportional]

$$
\text { or, } \frac{\mathrm{PQ}}{4 \mathrm{~cm}}=\frac{5 \mathrm{~cm}}{2 \mathrm{~cm}}=\frac{\mathrm{PR}}{\mathrm{PN}}
$$

Taking $1^{\text {st }}$ and $2^{\text {nd }}$ ratios, we get

$$
\begin{aligned}
& \frac{\mathrm{PQ}}{4 \mathrm{~cm}}=\frac{5 \mathrm{~cm}}{2 \mathrm{~cm}} \\
& \text { or, } 2 \mathrm{PQ}=20 \mathrm{~cm}
\end{aligned}
$$

Hence, $\mathrm{PQ}=10 \mathrm{~cm}$
7. a) In the given figure, $\mathrm{AB}=\mathrm{BC} \angle \mathrm{BAD}=\angle \mathrm{ABC}$, prove that: $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACB}$.

Solution:

Here,
In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACB}$;
(i) $\mathrm{AB}=\mathrm{AB}$
[Common side]
(ii) $\angle \mathrm{BAD}=\angle \mathrm{ABC}$
(A) [Given]
(iii) $\mathrm{AD}=\mathrm{BC}$
(S) [Given]
Hence, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACB}$
[By S.A.S. axiom]
b) If the area of circular pond is $144 \pi \mathrm{~m}^{2}$, find the radius of its pond.

Solution:

Here,
Area of circular pond $(\mathrm{A})=144 \pi \mathrm{~m}^{2}$

$$
\begin{aligned}
& \text { or, } \not \mathrm{fr}^{2}=144 \pi \\
& \text { or, } \mathrm{r}^{2}=144 \\
& \text { or, } \mathrm{r}^{2}=12^{2} \\
& \text { or, } \mathrm{r}=12
\end{aligned}
$$

Hence, the radius of the pond is 12 m .
c) Draw a net of cube.

Solution:

Here, the net of cube is

8. a) If $A(6,8)$ and $B(7,4)$ are any two given points, find the distance between $A B$.

Solution:

Here,
The given points are $\mathrm{A}(6,8) \rightarrow\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\mathrm{B}(7,4) \rightarrow\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
Now, by using distance formula; we get

$$
\begin{aligned}
\mathrm{AB}(\mathrm{~d}) & =\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}} \\
& =\sqrt{(7-6)^{2}+(4-8)^{2}} \\
& =\sqrt{(1)^{2}+(-4)^{2}} \\
& =\sqrt{1+16} \\
& =\sqrt{17} \text { units }
\end{aligned}
$$

b) A tank having length, breadth and height $12 \mathrm{~m}, 10 \mathrm{~m}, 6 \mathrm{~m}$ respectively. How much petrol does it hold?
Solution:
Here, length of the tank $(l)=12 \mathrm{~m}$, breadth $(b)=10 \mathrm{~m}$ and height $(h)=6 \mathrm{~m}$
Now, volume (V)

$$
\begin{aligned}
& =1 \times b \times h \\
& =12 \mathrm{~m} \times 10 \mathrm{~m} \times 6 \mathrm{~m} \\
& =720 \mathrm{~m}^{3}
\end{aligned}
$$

We know, $1 \mathrm{~m}^{3}=1000 \mathrm{l}$
$\therefore 720 \mathrm{~m}^{3}=720 \times 1000 \mathrm{l}=720000 \mathrm{l}$
Hence, the tank can hold 720000 liters of petrol.
c) If $U=\{1,2,3,4 \ldots . .10\}, P=\{1,2,3,4,5\}$ and $R=\{4,5,6,7\}$ then find $P-(\overline{P \cap R})$

Solution:

Here, $\mathrm{U}=\{1,2,3,4, \ldots, 10\}, P=\{1,2,3,4,5\}$ and $R=\{4,5,6,7\}$
Now, $P \cap R=\{1,2,3,4,5\} \cap\{4,5,6,7\}=\{4,5\}$

$$
\therefore \overline{\mathrm{P} \cap \mathrm{R}}=\mathrm{U}-(\mathrm{P} \cap \mathrm{R})=\{1,2,3,6,7,8,9,10\}
$$

Again, $P-(\overline{\mathrm{P} \cap \mathrm{R}})=\{1,2,3,4,5\}-\{1,2,3,6,7,8,9,10\}=\{4,5\}$
9. a) Convert the binary number $(101110111)_{2}$ into decimal number.

Solution:

$$
\text { Here, } \begin{aligned}
(101110111)_{2} & =1 \times 2^{8}+0 \times 2^{7}+1 \times 2^{6}+1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0} \\
& =1 \times 256+0 \times 128+1 \times 64+1 \times 32+1 \times 16+0 \times 8+1 \times 4+1 \times 2+1 \times 1 \\
& =256+0+64+32+16+0+4+2+1 \\
& =375
\end{aligned}
$$

b) The monthly income of a family is Rs 30,000 . The ratio of the expenditure and saving is
$4: 2$. Find the amount of expenditure and saving.

Solution:

Let, the expenditure = Rs 4 x and the saving $=$ Rs 2 x .
Now, total income = Rs 30,000

$$
\begin{aligned}
& \text { or, Saving + Expenditure }=\text { Rs } 30,000 \\
& \begin{aligned}
& \text { or, } 2 \mathrm{x}+4 \mathrm{x}=\text { Rs } 30,000 \\
& \text { or, } 6 \mathrm{x}=\text { Rs } 30,000 \\
& \text { or, } \mathrm{x}
\end{aligned} \\
& \begin{array}{l}
=\frac{\text { Rs } 30000}{6} \\
\therefore \mathrm{x}
\end{array} \quad=\text { Rs } 5000
\end{aligned}
$$

Hence, the amount of expenditure $=4 \mathrm{x}$

$$
\begin{aligned}
& =4 \times \operatorname{Rs} 5,000 \\
& =\text { Rs } 20,000 \\
& =2 \mathrm{x} \\
& =2 \times \operatorname{Rs} 5,000 \\
& =\text { Rs } 10,000
\end{aligned}
$$

And the amount of saving
c) Find the median from the given data:

$$
10,30,20,40,50,20,60
$$

Solution:

Here, the given data in ascending order is

$$
10,20,20,30,40,50,60
$$

No. of terms $(\mathrm{N})=7$
Now, position of median $\quad=\left(\frac{\mathrm{N}+1}{2}\right)^{\text {th item }}$

$$
\begin{aligned}
& =\left(\frac{7+1}{2}\right)^{\text {th item }} \\
& =4^{\text {th }} \text { item }
\end{aligned}
$$

Hence, the required median is 30 .
10. a) If $a+\frac{1}{a}=12$, find the value of $a^{3}+\frac{1}{a^{3}}$.

Solution:

Here, $a+\frac{1}{a}=12, a^{3}+\frac{1}{a^{3}}=$?
We have, $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$

$$
\begin{aligned}
\therefore a^{3}+\frac{1}{a^{3}} & =\left(a+\frac{1}{a}\right)^{3}-3 \times a \times \frac{1}{a}\left(a+\frac{1}{a}\right) \\
& =12^{3}-3 \times 12 \\
& =1728-36 \\
& =1692
\end{aligned}
$$

b) Find the value of: $\left(\frac{1}{64}\right)^{-1 / 6}$

Solution:

Here, $\left(\frac{1}{64}\right)^{-1 / 6}$

$$
\begin{aligned}
& =\left(\frac{64}{1}\right)^{1 / 6} \quad\left[\because\left(\frac{a}{b}\right)^{-m}=\left(\frac{b}{a}\right)^{m}\right] \\
& =\left(2^{6}\right)^{1 / 6} \\
& =2
\end{aligned}
$$

c) Simplify: $\frac{3^{x+1}+3^{x}}{2 \times 3^{x}}$

Solution:

$$
\text { Here, } \begin{aligned}
& \frac{3 \mathrm{x}+1+3 \mathrm{x}}{2 \times 3 \mathrm{x}} \\
& =\frac{3 \mathrm{x} \times 31+3 \mathrm{x}}{2 \times 3 \mathrm{x}} \\
& =\frac{3 \mathrm{x}(3+1)}{2 \times 3 \mathrm{x}} \\
& =\frac{4}{2} \\
& =2
\end{aligned}
$$

11. a) Solve: $a^{2}-4 a=0$

Solution:
Here, $a^{2}-4 a=0$
or, $a(a-4)=0$
Either, a $=0$
OR, $a-4=0 \quad \therefore a=4$
Hence, $a=0$ or 4 .
b) Solve the given inequality and show in a number line. :

$$
3 x+2 \leq 17
$$

Solution:
Here, $3 x+2 \leq 17$

$$
\text { or, } 3 x \leq 15
$$

$$
\text { or, } x \leq 5
$$

Showing it in the number line

12. Construct a regular pentagon with a side 5 cm by using compass.

Solution:
Here,
In regular pentagon, each side of regular pentagon $=5 \mathrm{~cm}$.
No. of sides (n) $=5$

Now, each interior angle $=\frac{(n-2) \times 180^{\circ}}{n}$

$$
\begin{aligned}
& =\frac{(5-2) \times 180^{\circ}}{5} \\
& =3 \times 36^{\circ} \\
& =108^{\circ}
\end{aligned}
$$

Hence, ABCDE is the required regular pentagon.
13. Verify experimentally that the sum of interior angles of a triangle is two right angles.(Two triangles of different size are necessary)

Solution:

Here,
Step 1: Two triangles ABC of different shapes and sizes are drawn.

Fig. (i)

Step 2: $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$ are measured in each figure and tabulated the result.

Fig.	$\angle \mathrm{A}$	$\angle \mathrm{B}$	$\angle \mathrm{C}$	$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}$	Result
(i)	58°	90°	32°	180°	$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
(ii)	110°	43°	27°	180°	$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

Conclusion: From the above experiment, we came to know that the sum of interior angles of the triangle is always 180°.
14. Plot the points $P(2,7), Q(3,3)$ and $R(6,7)$ on graph paper. Find the co-ordinates of image of the point P, Q and R when P, Q and R are rotated through $+90^{\circ}$ about the origin $O(0,0)$ and show the image on the same graph paper.

Solution:

Here,
The vertices of a triangle $P Q R$ are $P(2,7), Q(3,3)$ and $R(6,7)$.
Now,
Rotating $\triangle \mathrm{PQR}$ through 90° about (0,0), we get

Plotting both the triangles on the same graph paper

15. In a group of 120 students, it was found that 80 students liked apple and 40 liked banana. If 20 of them liked both fruits then using Venn - diagram, find the number of students who did not like both fruits.

Solution:

Let, A and B denote the sets of students who liked apple and banana respectively.
Then, $n(U)=120$

$$
\begin{aligned}
& \mathrm{n}(\mathrm{~A})=80 \\
& \mathrm{n}(\mathrm{~B})=40 \\
& \mathrm{n}(\mathrm{~A} \cap \mathrm{~B})=20
\end{aligned}
$$

Now, drawing a Venn-diagram to show the above information

Also, $n(n(A \cup B) \quad=n(A)+n(B)-n(A \cap B)$

$$
=80+40-20
$$

$$
=100
$$

Again, $n(\overline{A \cup B}) \quad=n(U)-n(A \cup B)$
$=120-100$
$=20$
Hence, 20 students didn't like both fruits.
16. Simplify: $\frac{42}{\sqrt{28}}+\frac{60}{\sqrt{45}}-2 \sqrt{20}+2 \sqrt{175}$

Solution:

Here,

$$
\begin{aligned}
& \frac{42}{\sqrt{28}}+\frac{60}{\sqrt{45}}-2 \sqrt{20}+2 \sqrt{175} \\
& =\frac{42}{\sqrt{2 \times 2 \times 7}}+\frac{60}{\sqrt{3 \times 3 \times 5}}-2 \sqrt{2 \times 2 \times 5}+2 \sqrt{5 \times 5 \times 7} \\
& =\frac{42}{2 \sqrt{7}}+\frac{60}{3 \sqrt{5}}-2 \times 2 \sqrt{5}+2 \times 5 \sqrt{7} \\
& =\frac{21}{\sqrt{7}}+\frac{20}{\sqrt{5}}-4 \sqrt{5}+10 \sqrt{7} \\
& =\frac{21}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}+\frac{20}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}-4 \sqrt{5}+10 \sqrt{7} \\
& =\frac{21 \sqrt{7}}{7}+\frac{20 \sqrt{5}}{5}-4 \sqrt{5}+10 \sqrt{7} \\
& =3 \sqrt{7}+4 \sqrt{5}-4 \sqrt{5}+10 \sqrt{7} \\
& =3 \sqrt{7}+10 \sqrt{7} \\
& =13 \sqrt{7}
\end{aligned}
$$

17. If a cube has total surface area $150 \mathrm{~cm}^{2}$, find the volume of a cube.

Solution:

Here, TSA of cube $=150 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \text { or, } 6 l^{2}=150 \\
& \text { or, } l^{2}=25 \\
& \text { or, } l^{2}=5^{2} \\
& \text { or, } l=5 \mathrm{~cm}
\end{aligned}
$$

Again, volume (V) $=l^{3}$

$$
\begin{aligned}
& =(5 \mathrm{~cm})^{3} \\
& =125 \mathrm{~cm}^{3}
\end{aligned}
$$

18. 15 men can do a piece of work in 80 days. How long will it take to complete the work by 10 men?

Solution:

Let, 10 men can finish the work in x days.
Then,

No. of men	Working days
15	
10	\downarrow

By the rule of indirect variation, we get

$$
\begin{aligned}
& \frac{15}{10}=\frac{x}{80} \\
& \text { or, } 10 x=1200 \\
& \text { or, } x=120
\end{aligned}
$$

Hence, 10 men can complete the work in 120 days.
19. What sum of money amounts to Rs 8700 in 3 years at the rate of 24% per annum.

Solution:

Here,

$$
\begin{aligned}
& \text { Amount }(A)=\text { Rs } 8,700 \\
& \text { Time }(T)=3 \text { years } \\
& \text { Rate }(R)=24 \% \text { p.a. }
\end{aligned}
$$

Sum of money $(\mathrm{P})=$?
We have, $\mathrm{P}=\frac{\mathrm{A} \times 100}{100+\mathrm{TR}}$

$$
\begin{aligned}
& =\frac{8700 \times 100}{100+3 \times 24} \\
& =\frac{870000}{100+72} \\
& =\frac{870000}{172} \\
& =\text { Rs } 5,058.14
\end{aligned}
$$

Hence, the required sum is Rs $5,058.14$
20. What is the price of a mobile whose market price is Rs 15,000 and 13% VAT was levied after allowing 20% discount on it?

Solution:

Here, M.P. of a mobile $=$ Rs 15,000
Discount percent $=20 \%$
VAT rate $=13 \%$
S.P. with VAT =?

$$
\begin{aligned}
\text { Now, discount amount } & =\text { D } \% \text { of M.P. } \\
& =20 \% \text { of Rs } 15,000 \\
& =\frac{20}{100} \times 15000 \\
& =\text { Rs } 3000 \\
\text { Also, S.P. after discount } & =\text { MP }- \text { Discount } \\
& =15000-3000 \\
& =\text { Rs } 12000
\end{aligned}
$$

Again, VAT amount $=$ VAT\% of S.P.

$$
=13 \% \text { of Rs } 12000
$$

$$
=\frac{13}{100} \times 12000
$$

$$
\text { = Rs } 1560
$$

Thus, S.P. with VAT $=$ S.P. + VAT

$$
\begin{aligned}
& =\text { Rs } 12000+\text { Rs } 1560 \\
& =\text { Rs } 13,560
\end{aligned}
$$

21. Find the arithmetic mean from the following data:

x	2	4	6	8	10	12	14
f	5	3	4	3	7	3	4

Solution:

Here,

\boldsymbol{x}	\boldsymbol{f}	$\boldsymbol{f} \times \boldsymbol{X}$
2	5	10
4	3	12
6	4	24
8	3	24
10	7	70
12	3	36
14	4	56
	$\boldsymbol{N}=29$	$\boldsymbol{\Sigma} \boldsymbol{x}=232$

Now, mean $(\bar{X})=\frac{\sum f x}{N}$

$$
\begin{aligned}
& =\frac{232}{29} \\
& =8
\end{aligned}
$$

Hence, the mean of the given data is 8 .
22. Factorize: $(a+b)^{2}+11(a+b)+30$

Solution:

Here, $(a+b)^{2}+11(a+b)+30$
Let, $(a+b)=x$ then the expression becomes

$$
\begin{aligned}
& x^{2}+11 x+30 \\
& =x^{2}+(6+5) x+30 \\
& =x^{2}+6 x+5 x+30 \\
& =x(x+6)+5(x+6) \\
& =(x+6)(x+5)
\end{aligned}
$$

Replacing $x=a+b$, we get

$$
(a+b+6)(a+b+5)
$$

23. Find H.C.F.: $x^{2}-5 x+6, x^{2}-6 x+5$ and $x^{2}-9$

Solution:

Here,

$$
\begin{aligned}
\text { The } 1^{\text {st }} \text { expression } & =x^{2}-5 x+6 \\
& =x^{2}-(3+2) x+6 \\
& =x^{2}-3 x-2 x+6 \\
& =x(x-3)-2(x-3) \\
& =(x-3)(x-2) \\
\text { The } 2^{\text {nd }} \text { expression } & =x^{2}-6 x+5 \\
& =x^{2}-(5+1) x+5 \\
& =x^{2}-5 x-x+5 \\
& =x(x-5)-1(x-5) \\
\text { The } 3^{\text {rd }} \text { expression } & =(x-5)(x-1) \\
& =x^{2}-9 \\
& =x^{2}-3^{2} \\
& =(x+3)(x-3)
\end{aligned}
$$

Hence, H.C.F. $=$ Common factor $=1$
24. Simplify: $\frac{1}{m-n}+\frac{1}{m+n}-\frac{2 m}{m^{2}+n^{2}}$

Solution:

Here, $\frac{1}{m-n}+\frac{1}{m+n}-\frac{2 m}{m^{2}+n^{2}}$

$$
\begin{aligned}
& =\frac{m+n+m-n}{(m-n)(m+n)}-\frac{2 m}{m^{2}+n^{2}} \\
& =\frac{2 m}{m^{2}-n^{2}}-\frac{2 m}{m^{2}+n^{2}} \\
& =\frac{2 m\left(m^{2}+n^{2}\right)-2 m\left(m^{2}-n^{2}\right)}{\left(m^{2}-n^{2}\right)\left(m^{2}+n^{2}\right)} \\
& =\frac{2 m^{3}+2 m n^{2}-2 m^{3}+2 m n^{2}}{\left(m^{2}\right)^{2}-\left(n^{2}\right)^{2}} \\
& =\frac{4 m n^{2}}{m^{4}-n^{4}}
\end{aligned}
$$

25. Solve graphically: $x+y=5, x-y=1$

Solution:
Here,
The given equations are $x+y=5 \quad \therefore y=5-x$

x	0	1	2
y	5	4	3

Also, $x-y=1 \quad$ or, $x-1=y \quad \therefore y=x-1$

x	1	2	3
y	0	1	2

In the graph, the lines intersect at $(3,2)$. So, $\mathrm{x}=3$ and $\mathrm{y}=2$.

THE END

