Complete Solution Set - 2080

First Term Exam - 2080
Class:- X
F.M:100

Subject:- Optional I (Mathematics)
Time:- 3 hrs
Attempt all the questions

Group 'A’ [10×1 = 10]

1. (a) Write down the condition for the existence of inverse function.

Solution:

The inverse of a function exists if it is a one to one and onto function.
(b) What is the nature of graph of constant function?

Solution:

The graph of constant function is always parallel to x -axis.
2. (a) If a polynomial $p(x)$ is divided by a linear polynomial $(x+a)$, what will be its remainder?

Solution:

The remainder $(\mathrm{R})=p(-a)$
(b) If $f(x)$ is a dividend, $g(x)$ is a divisor, $Q(x)$ is quotient and R is a remainder, then write down the relation among them.

Solution:

By division algorithm, polynomial $=$ Divisor \times Quotient + Remainder.
Hence, $f(x)=g(x) \times Q(x)+R$
3. (a) If $\mathrm{A}=[-7]$ is a square matrix of order 1×1, then what will be the determinant of A ?

Solution:
Here, $\mathrm{A}=[-7]$ is a square matrix of order $1 \times 1 . \quad \therefore|\mathrm{A}|=-7$
(b) What is the inverse of identity matrix of order 2×2 ? Write it.

Solution:

The inverse of identity matrix of order 2×2 is identity matrix itself.
4. (a) Express $\cos \theta$ in terms of $\tan \frac{\theta}{2}$.

Solution:

We know, $\cos \theta=\frac{1-\tan ^{2} \frac{\theta}{2}}{1+\tan ^{2} \frac{\theta}{2}}$
(b) What is the expanded form of $\sin 3 \mathrm{~A}$ in terms of $\sin \mathrm{A}$?

Solution:

We know, $\sin 3 \mathrm{~A}=3 \sin \mathrm{~A}-4 \sin ^{3} \mathrm{~A}$.

2 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)

5. (a) If θ be the angle between the two straight lines $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$ having the slopes m_{1} and m_{2} respectively, then write the formula to calculate angle between them.

Solution:

We know, $\tan \theta= \pm \frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$
(b) Write the condition of coincident of two lines when the slopes m_{1} and m_{2} are given.

Solution:

The condition of coincident of two lines is $\mathrm{m}_{1}=\mathrm{m}_{2}$.

Group '日' [13 $\times 2$ = 26]

6. (a) If $(x-3)$ is a factor of the polynomial $f(x)=x^{3}+4 x^{2}+\mathrm{k} x-30$, find the value of k .

Solution:

The given polynomial is $f(x)=x^{3}+4 x^{2}+\mathrm{k} x-30$ and $g(x)=x-3$
Comparing $x-3$ with $x-a$, we get

$$
a=3
$$

Since, $(x-3)$ is a factor of $f(x)$.
So, remainder $(\mathrm{R})=f(a) \quad=0$
or, $f(3)=0$
or, $(3)^{3}+4(3)^{2}+\mathrm{k}(3)-30=0$
or, $27+36+3 \mathrm{k}-30=0$
$\begin{array}{lll}\text { or, } & 3 \mathrm{k} & =-33 \\ \text { or, } & \mathrm{k} & =\frac{-33}{3}=-11\end{array}$
Hence, the required value of k is -11 .
(b) If $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$ are two given functions. Find g of by representing them into arrow diagrams.

Solution:

The given functions are $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$
Representing the function $g \circ f$ in arrow diagram:

From above arrow-diagram, we get

$$
g o f=\{(1,3),(3,1),(4,3)\}
$$

(c) From the adjoining graph of trigonometric function, answer the following questions:
(i) Which type of function is shown by given graph? Write it.
(ii) Write down its range.

Solution:

(i) The function $y=\cos x$ is shown in the graph.
(ii) The range of the function $y=\cos x$ is the set of all real numbers from -1 to +1 inclusive. i.e., $[-1,+1]$
7. (a) Solve for $\mathrm{t}:\left|\begin{array}{cc}\mathrm{t}-1 & \mathrm{t} \\ \mathrm{t}^{2}+1 & \mathrm{t}^{2}+\mathrm{t}+1\end{array}\right|=0$.

Solution:

Here, $\left|\begin{array}{cc}\mathrm{t}-1 & \mathrm{t} \\ \mathrm{t}^{2}+1 & \mathrm{t}^{2}+\mathrm{t}+1\end{array}\right| \quad=0$
or, $(\mathrm{t}-1)\left(\mathrm{t}^{2}+\mathrm{t}+1\right)-\mathrm{t}\left(\mathrm{t}^{2}+1\right)=0$
or, $\mathrm{t}^{3}-1^{3}-\mathrm{t}^{3}-\mathrm{t}=0$
or, $-\mathrm{t}=1$
or, $t=-1$
Hence, the required value of t is -1 .
(b) Find the inverse of the matrix $\mathrm{A}=\left(\begin{array}{rr}-1 & 3 \\ 2 & -8\end{array}\right)$ if exists.

Solution:

Here,
The given matrix is $\mathrm{A}=\left(\begin{array}{rr}-1 & 3 \\ 2 & -8\end{array}\right)$
Now, determinant of $\mathrm{A}=\left|\begin{array}{cc}-1 & 3 \\ 2 & -8\end{array}\right|$

$$
\begin{aligned}
& =(-1)(-8)-2 \times 3 \\
& =8-6 \\
& =2
\end{aligned}
$$

Since, $|\mathrm{A}| \neq 0$ So, A^{-1} exists.
We have, $\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}$ Adjoint of A

$$
=\frac{1}{2}\left(\begin{array}{cc}
-8 & -3 \\
-2 & -1
\end{array}\right)
$$

Hence, $\mathrm{A}^{-1}=-\frac{1}{2}\left(\begin{array}{ll}8 & 3 \\ 2 & 1\end{array}\right)$

4 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)

8. (a) If the line $2 x-3 y=6$ is perpendicular to the line $\frac{x}{\mathrm{p}}+\frac{y}{9}=3$, calculate the value of p .

Solution:

Here,
The slope of line $2 x-3 y=6$ is $\mathrm{m}_{1} \quad=-\frac{\text { coefficient of } x}{\text { coefficeint of } y}$

$$
=-\frac{2}{-3}
$$

$$
=\frac{2}{3}
$$

The slope of line $\frac{x}{\mathrm{p}}+\frac{y}{9}=3$ is $\mathrm{m}_{2} \quad=-\frac{\text { coefficient of } x}{\text { coefficeint of } y}$

$$
\begin{aligned}
& =-\frac{\frac{1}{p}}{\frac{1}{9}} \\
& =-\frac{9}{p}
\end{aligned}
$$

Since, the lines are perpendicular to each other.
So, $\quad m_{1} \times m_{2}=-1$

$$
\begin{array}{ll}
\text { or, } \frac{2}{3} \times\left(-\frac{9}{p}\right) & =-1 \\
\text { or, }-18 & =-3 p \\
\text { or, } p & =6
\end{array}
$$

Hence, the required value of p is 6 .
(b) What is the obtuse angle between two straight lines whose slopes are $\frac{7}{4}$ and $\frac{3}{11}$? Find it.

Solution:

Here, the slopes of two straight lines are $\mathrm{m}_{1}=\frac{7}{4}$ and $\mathrm{m}_{2}=\frac{3}{11}$
Let, θ be the angle between the lines.
We have, $\tan \theta= \pm \frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$

$$
\begin{aligned}
& = \pm \frac{\frac{7}{4}-\frac{3}{11}}{1+\frac{7}{4} \times \frac{3}{11}} \\
& = \pm \frac{\frac{7}{4}-\frac{3}{11}}{1+\frac{21}{44}}
\end{aligned}
$$

5 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)

$$
\begin{aligned}
& = \pm \frac{\frac{77-12}{44}}{\frac{44+21}{44}} \\
& = \pm \frac{65}{65} \\
& = \pm 1
\end{aligned}
$$

To find the obtuse angle, the value of $\tan \theta$ should be negative.
Thus, taking (-) ve sign, we get

$$
\begin{aligned}
& \tan \theta=-1 \\
& \text { or, } \theta=\tan ^{-1}(-1)=135^{\circ}
\end{aligned}
$$

Hence, the obtuse angle between the lines is 135°.
9. (a) If $\sin \theta=\frac{3}{5}$, find the value of $\cos \theta$ and $\sin 2 \theta$.

Solution:

Here, $\sin \theta=\frac{3}{5}$
We have, $\cos \theta=\sqrt{1-\sin ^{2} \theta}$

$$
\begin{aligned}
& =\sqrt{1-\left(\frac{3}{5}\right)^{2}} \\
& =\sqrt{1-\frac{9}{25}} \\
& =\sqrt{\frac{25-9}{25}} \\
& =\sqrt{\frac{16}{25}} \\
& =\frac{4}{5}
\end{aligned}
$$

Again, $\sin 2 \theta=2 \sin \theta \cdot \cos \theta$
$=2 \times \frac{3}{5} \times \frac{4}{5}$
$=\frac{24}{25}$
(b) Prove that: : $\frac{3 \cos x+\cos 3 x}{3 \sin x-\sin 3 x}=\cot ^{3} x$.

Solution:

Here, L.H.S. $=\frac{3 \cos x+\cos 3 x}{3 \sin x-\sin 3 x}$

$$
=\frac{3 \cos x+4 \cos ^{3} x-3 \cos x}{3 \sin x-\left(3 \sin x-4 \sin ^{3} x\right)}
$$

Vedanta Publication (P).Ltd., Vanasthali, Kathmandu

6 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)

$$
\begin{aligned}
& =\frac{4 \cos ^{3} x}{3 \sin x-3 \sin x+4 \sin ^{3} x} \\
& =\frac{4 \cos ^{3} x}{4 \sin ^{3} x} \\
& =\cot ^{2} x \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence, proved
(c) Simplify: $\frac{1}{2}\left(\cot \frac{\mathrm{~A}}{2}-\tan \frac{\mathrm{A}}{2}\right)$

Solution:
Here, $\quad \frac{1}{2}\left(\cot \frac{\mathrm{~A}}{2}-\tan \frac{\mathrm{A}}{2}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{\cos \frac{A}{2}}{\sin \frac{A}{2}}-\frac{\sin \frac{\mathrm{A}}{2}}{\cos \frac{\mathrm{~A}}{2}}\right) \\
& =\frac{1}{2}\left(\frac{\cos ^{2} \frac{\mathrm{~A}}{2}-\sin ^{2} \frac{\mathrm{~A}}{2}}{\sin \frac{\mathrm{~A}}{2} \cdot \cos \frac{\mathrm{~A}}{2}}\right) \\
& =\frac{\cos ^{2} \frac{\mathrm{~A}}{2}-\sin ^{2} \frac{\mathrm{~A}}{2}}{2 \sin \frac{\mathrm{~A}}{2} \cdot \cos \frac{\mathrm{~A}}{2}} \\
& =\frac{\cos \mathrm{A}}{\sin \mathrm{~A}} \\
& =\cot \mathrm{A}
\end{aligned}
$$

10. (a) If $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$, show that the value of $\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$.

Solution:

Here,
Given: $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
Need to show: $\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$
We have,

$$
\begin{array}{ll}
\cos \mathrm{A} & =1-2 \sin ^{2} \frac{\mathrm{~A}}{2} \\
\text { or, } \cos 30^{\circ} & =1-2 \sin ^{2} \frac{30^{\circ}}{2}
\end{array}
$$

$$
\begin{aligned}
& \text { or, } \frac{\sqrt{3}}{2}=1-2 \sin ^{2} 15^{\circ} \\
& \text { or, } 2 \sin ^{2} 15^{\circ}=1-\frac{\sqrt{3}}{2} \\
& \text { or, } 2 \sin ^{2} 15^{\circ}=\frac{2-\sqrt{3}}{2} \\
& \text { or, } \sin ^{2} 15^{\circ}=\frac{2-\sqrt{3}}{4} \\
& \text { or, } \sin 15^{\circ}=\sqrt{\frac{2-\sqrt{3}}{4}} \\
& \text { or, } \sin 15^{\circ}=\sqrt{\frac{2-\sqrt{3}}{4} \times \frac{2}{2}} \\
& \text { or, } \sin 15^{\circ}=\sqrt{\frac{4-2 \sqrt{3}}{8}} \\
& \text { or, } \sin 15^{\circ}=\sqrt{\frac{3-2 \sqrt{3}+1}{8}} \\
& \text { or, } \sin 15^{\circ}=\sqrt{\frac{(\sqrt{3})^{2}-2 \sqrt{3}}{8} \cdot 1+1^{2}} \\
& \text { or, } \sin 15^{\circ}=\sqrt{\frac{(\sqrt{3}-1)^{2}}{2^{2} \times 2}} \\
& \therefore \sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}
\end{aligned}
$$

Hence, proved
(b) For a grouped data, if the value of lower quartile $\left(\mathrm{Q}_{1}\right)$ is 31.42 and quartile deviation (Q.D) is 4.75. Find the value of upper quartile $\left(\mathrm{Q}_{3}\right)$ and coefficient of quartile deviation.

Solution:

Here,
Lower quartile $\left(\mathrm{Q}_{1}\right)=31.42$
Quartile deviation (Q.D) $=4.75$
Upper quartile $\left(\mathrm{Q}_{3}\right)=$?
Coefficient of quartile deviation $=$?
Now, Q.D. $=\frac{\mathrm{Q}_{3}-\mathrm{Q}_{1}}{2}$
or, $4.75=\frac{\mathrm{Q}_{3}-31.42}{2}$
or, $9.5=\mathrm{Q}_{3}-31.42$
$\therefore \mathrm{Q}_{3}=40.92$

8 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)
Again, coefficient of quartile deviation $=\frac{\mathrm{Q}_{3}-\mathrm{Q}_{1}}{\mathrm{Q}_{3}+\mathrm{Q}_{1}}$

$$
\begin{aligned}
& =\frac{40.92-30.42}{40.92+30.42} \\
& =\frac{9.5}{71.34} \\
& =0.1331
\end{aligned}
$$

(c) Find the standard deviation and variance of a continuous series having $\mathrm{N}=10, \Sigma \mathrm{fm}=72$ and $\Sigma f m^{2}=720$.

Solution:

Here, $\mathrm{N}=10, \Sigma f m=72$ and $\Sigma \mathrm{fm}^{2}=720$
Standard deviation $=$?
Variance $=$?
Now, S. D. $(\sigma)=\sqrt{\frac{\Sigma f m^{2}}{\mathrm{~N}}-\left(\frac{\Sigma f m}{\mathrm{~N}}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{720}{10}-\left(\frac{72}{10}\right)^{2}} \\
& =\sqrt{20.16} \\
& =4.49
\end{aligned}
$$

Again, variance $=\sigma^{2}=(4.49)^{2}=20.16$

Grロup 'C' [11×4 = 44]

11. If $f(x)$ and $g(x)$ be two functions which are defined by $f(x)=x+2$ and $g(x)=\frac{3 x-2}{4}$ such that $f(x)=g^{-1}(x)$. Find the value of x.

Solution:

The given functions are $f(x)=x+2$ and $g(x)=\frac{3 x-2}{4}$
Given relation: $f(x)=g^{-1}(x)$
Let, $g(x)=y$ then $y=\frac{3 x-2}{4}$
Now, interchanging the role of x and y, we get

$$
\begin{aligned}
x= & \frac{3 y-2}{4} \\
\text { or, } 3 y-2 & =4 x \\
\text { or, } 3 y & =4 x+2 \\
\text { or, } y \quad & =\frac{4 x+2}{3} \\
\therefore g^{-1}(x) & =\frac{4 x+2}{3}
\end{aligned}
$$

9 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)
According to the question, $f(x)=g^{-1}(x)$

$$
\begin{aligned}
& \text { or, } x+2=\frac{4 x+2}{3} \\
& \text { or, } 3 x+6=4 x+2 \\
& \text { or, } 4 \quad=x
\end{aligned}
$$

Hence, the required value of x is 4 .
12. It is given that $f(x)=3 x+5$ and $g(x)=\frac{3 x+2}{4}$. What value of x makes $f \mathrm{og}^{-1}(x)$ an identity function? Find it.

Solution:

Here,
The given functions are $f(x)=3 x+5$ and $g(x)=\frac{3 x+2}{4}$
Given relation: $f \circ g^{-1}(x)$ an identity function i.e., $f \circ g^{-1}(x)=x$
Let, $g(x)=y$ then $y=\frac{3 x+2}{4}$
Now, interchanging the role of x and y, we get

$$
\begin{aligned}
x & =\frac{3 y+2}{4} \\
\text { or, } 3 y+2 & =4 x \\
\text { or, } 3 y & =4 x-2 \\
\text { or, } y \quad & =\frac{4 x-2}{3} \\
\text { or, } g^{-1}(x) & =\frac{4 x-2}{3}
\end{aligned}
$$

According to the question, $f \circ g^{-1}(x)=x$

$$
\begin{aligned}
& \text { or, } f\left(\frac{4 x-2}{3}\right)=x \\
& \text { or, } 3\left(\frac{4 x-2}{3}\right)+5=x \\
& \text { or, } 4 x-2+5=x \\
& \text { or, } 3 x=-3 \\
& \text { or, } x=-1
\end{aligned}
$$

Hence, the required value of x is -1 .
13. The polynomial $f(x)=3 x^{3}+2 x^{2}-\mathrm{n} x+\mathrm{m}$ is exactly divisible by $(x-1)$ but leaves a remainder 10 when divided by $(x+4)$, then find the values of m and n.

Solution:

The given polynomial $f(x)=3 x^{3}+2 x^{2}-\mathrm{n} x+\mathrm{m}$
Case-I: $(x-1)$ exactly divides $f(x)$.

$$
\text { So, remainder }(\mathrm{R}) \quad=0
$$

Vedanta Publication (P).Ltd., Vanasthali, Kathmandu

$$
\begin{array}{ll}
\text { or, } f(1) & =0 \\
\text { or, } 3(1)^{3}+2(1)^{2}-\mathrm{n} \times 1+\mathrm{m} & =0 \\
\text { or, } 5-\mathrm{n}+\mathrm{m} & =0 \\
\therefore \quad \mathrm{~m} & =\mathrm{n}-5 \tag{i}
\end{array}
$$

Case-II:
Divisor $=(x+4)$ and remainder $=10$

$$
\begin{array}{lll}
\begin{array}{ll}
\text { So, remainder }(\mathrm{R}) & =10 \\
\text { or, } f(-4) & =10
\end{array} & \\
\text { or, } 3(-4)^{3}+2(-4)^{2}-\mathrm{n} \times(-4)+\mathrm{m} & =10 \\
\text { or, }-192+32+4 \mathrm{n}+\mathrm{m} & & =10 \\
\text { or, } 4 \mathrm{n}+\mathrm{m} & & =170
\end{array}
$$

Putting the value of ' m ' in equation (ii) from equation (i), we get

$$
\begin{array}{ll}
4 \mathrm{n}+\mathrm{m} & =170 \\
\text { or, } 4 \mathrm{n}+\mathrm{n}-5 & =170 \\
\text { or, } \quad 5 \mathrm{n} & =175 \\
\therefore \quad n & =35
\end{array}
$$

Again, putting the value of ' n ' in equation (i), we get

$$
\mathrm{m} \quad=35-5=30
$$

Hence, the required value of ' m ' is 30 and the value of ' n ' is 35 .
14. Find the equation of a straight line which passes through a point $(3,4)$ and parallel to the line $3 x+4 y=12$.

Solution:

Here,
The slope of line $3 x+4 y=12$ is $\mathrm{m}_{1}=-\frac{\text { coefficient of } x}{\text { coefficeint of } y}$

$$
=-\frac{3}{4}
$$

Let, m_{2} be the slope of the line parallel to the given line $3 x+4 y=12$.
Then, $\quad \mathrm{m}_{1}=\mathrm{m}_{2}$

$$
\begin{aligned}
& \text { or, }-\frac{3}{4}=\mathrm{m}_{2} \\
& \therefore \mathrm{~m}_{2}=-\frac{3}{4}
\end{aligned}
$$

Also, passing point $\left(x_{1}, y_{1}\right)=(3,4)$ and slope $\left(\mathrm{m}_{2}\right)=-\frac{3}{4}$

Again,

Equation of required line is given by $y-y_{1}=m_{2}\left(x-x_{1}\right)$

$$
\text { or, } y-4=-\frac{3}{4}(x-3)
$$

11 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)

$$
\begin{aligned}
& \text { or, } 4 y-16=-3 x+9 \\
& \text { or, } 3 x+4 y=25
\end{aligned}
$$

Hence, the required equation is $3 x+4 y=25$.
15. Solve by matrix method: $x+y=20$ and $x-y=4$.

Solution:

Here,
The given equations are:

$$
\begin{gather*}
x+y=20 \tag{i}\\
x-y=4 \tag{ii}
\end{gather*}
$$

Expressing equations (i) and (ii) in matrix form. We get

$$
\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{20}{4}
$$

$$
\text { or, } \mathrm{AX}=\mathrm{B} \text { where } \mathrm{A}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \mathrm{B}=\binom{20}{4} \text { and } \mathrm{X}=\binom{x}{y}
$$

$$
\begin{equation*}
\therefore \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \tag{iii}
\end{equation*}
$$

Also, determinant of $\mathrm{A}=\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|=-1-1=-2$
Since, $|\mathrm{A}| \neq 0$ So, A^{-1} exists and the given system has a unique solution.
Again, $\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}$ Ad joint of A

$$
=\frac{1}{-2}\left(\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right)
$$

Putting the value of A^{-1} in equation (iii), we get

$$
\begin{aligned}
\binom{x}{y} & =\frac{1}{-2}\left(\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right)\binom{20}{4} \\
\text { or, }\binom{x}{y} & =\frac{1}{-2}\binom{-20-4}{-20+4} \\
\text { or, }\binom{x}{y} & =\frac{1}{-2}\binom{-24}{-16} \\
\text { or, }\binom{x}{y} & =\binom{12}{8}
\end{aligned}
$$

Equating the corresponding elements, we get

$$
x=12 \text { and } y=8
$$

Hence, $x=12$ and $y=8$
16. Solve the equations $2(x-1)=y$ and $3(x-1)=4 y$ by Cramer's rule.

Solution:

Here,
The given equations are;

$$
\begin{equation*}
2(x-1)=y \quad \text { or, } 2 x-2=y \quad \therefore 2 x-y=2 \tag{i}
\end{equation*}
$$

Vedanta Publication (P).Ltd., Vanasthali, Kathmandu

12 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)

$$
\begin{equation*}
\text { and } 3(x-1)=4 y \quad \text { or, } 3 x-3=4 y \quad \therefore 3 x-4 y=3 \tag{ii}
\end{equation*}
$$

Coefficient of x	Coefficient of y	Constant
2	-1	2
3	-4	3

Now,

$$
\begin{aligned}
\mathrm{D}=\left|\begin{array}{ll}
2 & -1 \\
3 & -4
\end{array}\right|=-8+3 & =-5 \\
\mathrm{D}_{x}=\left|\begin{array}{ll}
2 & -1 \\
3 & -4
\end{array}\right|=-8+3 & =-5 \\
\mathrm{D}_{y}=\left|\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right|=6-6 & =0
\end{aligned}
$$

Again, by using Cramer's rule

$$
\begin{aligned}
& x=\frac{D_{x}}{D}=\frac{-5}{-5}=1 \\
& \text { and } y \quad=\frac{D_{y}}{D}=\frac{0}{-5}=0
\end{aligned}
$$

Hence, the value of x is 1 and that of y is 0 .
17. Without using calculator or table, find the value of following trigonometric expression: $\sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{5 \pi}{8}+\sin ^{4} \frac{7 \pi}{8}$

Solution:

Here,

$$
\begin{aligned}
& \sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{5 \pi}{8}+\sin ^{4} \frac{7 \pi}{8} \\
= & \sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4}\left(\pi-\frac{3 \pi}{8}\right)+\sin ^{4}\left(\pi-\frac{\pi}{8}\right) \\
= & \sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{\pi}{8} \\
= & 2 \sin ^{4} \frac{\pi}{8}+2 \sin ^{4} \frac{3 \pi}{8} \\
= & \frac{1}{2} \times 2\left(2 \sin ^{4} \frac{\pi}{8}+2 \sin ^{4} \frac{3 \pi}{8}\right) \\
= & \frac{1}{2}\left(4 \sin ^{4} \frac{\pi}{8}+4 \sin ^{4} \frac{3 \pi}{8}\right) \\
= & \frac{1}{2}\left[\left(2 \sin ^{2} \frac{\pi}{8}\right)^{2}+\left(2 \sin ^{2} \frac{3 \pi}{8}\right)^{2}\right] \\
= & \frac{1}{2}\left[\left(1-\cos 2 \times \frac{\pi}{8}\right)^{2}+\left(1-\cos 2 \times \frac{3 \pi}{8}\right)^{2}\right] \\
= & \frac{1}{2}\left[\left(1-\cos 45^{\circ}\right)^{2}+\left(1-\cos 135^{\circ}\right)^{2}\right]
\end{aligned}
$$

13 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)

$$
\begin{aligned}
& =\frac{1}{2}\left[\left(1-\frac{1}{\sqrt{2}}\right)^{2}+\left(1+\frac{1}{\sqrt{2}}\right)^{2}\right] \\
& =\frac{1}{2}\left(1-2 \times \frac{1}{\sqrt{2}}+\frac{1}{2}+1+2 \times \frac{1}{\sqrt{2}}+\frac{1}{2}\right) \\
& =\frac{1}{2}\left(1+\frac{1}{2}+1+\frac{1}{2}\right) \\
& =\frac{1}{2}\left(\frac{2+1+2+1}{2}\right) \\
& =\frac{1}{2}\left(\frac{6}{2}\right) \\
& =\frac{3}{2}
\end{aligned}
$$

18. Prove that: $8 \sin ^{4} \alpha=\cos 4 \alpha-4 \cos 2 \alpha+3$.

Solution:

Here,

$$
\begin{aligned}
\text { L.H.S. } & =8 \sin ^{4} \alpha \\
& =2 \times 4 \sin ^{4} \alpha \\
& =2\left(2 \sin ^{2} \alpha\right)^{2} \\
& =2(1-\cos 2 \alpha)^{2} \\
& =2\left(1-2 \cos 2 \alpha+\cos ^{2} 2 \alpha\right) \\
& =2-4 \cos 2 \alpha+2 \cos ^{2} 2 \alpha \\
& =2-4 \cos 2 \alpha+1+\cos 2(2 \alpha) \\
& =3-4 \cos 2 \alpha+\cos 4 \alpha \\
& =\cos 4 \alpha-4 \cos 2 \alpha+3 \\
& =\text { R.H.S. }
\end{aligned}
$$

Hence, proved
19. Reduce $\cos ^{6} \frac{\mathrm{~A}}{2}+\sin ^{6} \frac{\mathrm{~A}}{2}$ in terms of $\sin \mathrm{A}$.

Solution:

Here, $\cos ^{6} \frac{\mathrm{~A}}{2}+\sin ^{6} \frac{\mathrm{~A}}{2}=\left(\cos ^{2} \frac{\mathrm{~A}}{2}\right)^{3}+\left(\sin ^{2} \frac{\mathrm{~A}}{2}\right)^{3}$

$$
\begin{aligned}
& =\left(\cos ^{2} \frac{\mathrm{~A}}{2}+\sin ^{2} \frac{\mathrm{~A}}{2}\right)^{3}-3 \cos ^{2} \frac{\mathrm{~A}}{2} \cdot \sin ^{2} \frac{\mathrm{~A}}{2}\left(\cos ^{2} \frac{\mathrm{~A}}{2}+\sin ^{2} \frac{\mathrm{~A}}{2}\right) \\
& =1-3 \cos ^{2} \frac{\mathrm{~A}}{2} \cdot \sin ^{2} \frac{\mathrm{~A}}{2} \times 1 \\
& =1-\frac{1}{4} \times 4 \times 3 \cos ^{2} \frac{\mathrm{~A}}{2} \cdot \sin ^{2} \frac{\mathrm{~A}}{2} \\
& =1-\frac{3}{4}\left(2 \sin \frac{\mathrm{~A}}{2} \cdot \cos \frac{\mathrm{~A}}{2}\right)^{2}
\end{aligned}
$$

14 | Vedanta Publication (P).Ltd (First Term Model Question 2080 with complete solution)

$$
\begin{aligned}
& =1-\frac{3}{4}\left(\sin 2 \times \frac{\mathrm{A}}{2}\right) \\
& =1-\frac{3}{4} \sin \mathrm{~A}
\end{aligned}
$$

20. Find the mean deviation from mean and its coefficient from the following frequency distribution:

Marks Obtained	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No. of Students	3	5	7	3	4

Solution:

Here,
Computation of the mean deviation from the mean:

Marks	No. of students (f)	m	$f m$	$\|\mathrm{~m}-\overline{\mathrm{X}}\|$	$f\|m-\overline{\mathrm{X}}\|$
$0-10$	3	5	15	20	60
$10-20$	5	15	75	10	50
$20-30$	7	25	175	0	0
$30-40$	3	35	105	10	30
$40-50$	4	45	180	20	80
	$\mathrm{~N}=22$		$\Sigma f m=550$		$\Sigma f\|m-\mathrm{Md}\|=220$

Now, mean $(\overline{\mathrm{X}})=\frac{\Sigma f m}{\mathrm{~N}}=\frac{550}{22}=25$
Also, M.D. from mean $=\frac{\Sigma f|m-\mathrm{Md}|}{\mathrm{N}}=\frac{220}{22}=10$
Again, coefficient of M.D. $=\frac{\text { M.D. from mean }}{\text { Mean }}=\frac{10}{25}=0.4$
Hence, the mean deviation is 10 and its coefficient is 0.4
21. The following table gives the weight (in kg) of 20 workers in a certain company.

Weight in kg	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of workers	2	3	6	5	4

Then, calculate the arithmetic mean, standard deviation and coefficient of variation.
Solution:
Computation of the standard deviation:

Ages group	No. of people (f)	m	$f m$	${f m^{2}}^{2}$
$30-40$	2	35	70	2450
$40-50$	3	45	135	6075
$50-60$	6	55	330	18150
$60-70$	5	65	325	21125
$70-80$	4	75	300	22500
	$\mathrm{~N}=20$		$\Sigma f m=1160$	$\Sigma \mathrm{fm}^{2}=70300$

Vedanta Publication (P).Ltd., Vanasthali, Kathmandu

Now, mean $(\overline{\mathrm{X}})=\frac{\Sigma f m}{\mathrm{~N}}=\frac{1160}{20}=58$
Also, S.D. (σ)

$$
\begin{aligned}
& =\sqrt{\frac{f m^{2}}{\mathrm{~N}}-\left(\frac{f m}{\mathrm{~N}}\right)^{2}} \\
& =\sqrt{\frac{70300}{20}-\left(\frac{1160}{20}\right)^{2}} \\
& =\sqrt{3515-3364} \\
& =\sqrt{151} \\
& =12.29
\end{aligned}
$$

Again, coefficient of variation $=\frac{\sigma}{\overline{\mathrm{X}}} \times 100 \%$

$$
\begin{aligned}
& =\frac{12.29}{58} \times 100 \% \\
& =21.19 \%
\end{aligned}
$$

Grロபp 'D' (4×5 = 2ロ)

22. Given that $f(x)=2 x^{3}+3 x^{2}-11 x-6=0$ is a polynomial equation in x, find the difference between the greatest and the smallest roots of $f(x)$.

Solution:

Here, $f(x)=2 x^{3}+3 x^{2}-11 x-6$
The possible factors of 6 are $\pm 1, \pm 2, \pm 3$ and ± 6.
Comparing $(x-2)$ with $x-a$, we get

$$
\begin{aligned}
& a=2 \\
\text { Now, reminder (R) } & =f(a) \\
& =f(2) \\
& =2(2)^{3}+3(2)^{2}-11(2)-6 \\
& =16+12-22-6 \\
& =0
\end{aligned}
$$

Since, $f(2)=0$. Thus, $(x-2)$ is a factor of $f(x)$.
By using synthetic division method, we get

Thus, quotient, $\mathrm{Q}(x)=2 x^{2}+7 x+3$ and remainder $(\mathrm{R})=0$
Also, $f(x)=2 x^{3}+3 x^{2}-11 x-6=(x-2) \times \mathrm{Q}(x)+\mathrm{R}$

$$
\text { or, } 0 \quad=(x-2)\left(2 x^{2}+7 x+3\right)+0
$$

Vedanta Publication (P).Ltd., Vanasthali, Kathmandu

$$
\begin{aligned}
\text { or, } 0 & =(x-2)\left\{2 x^{2}+(6+1) x+3\right\} \\
\text { or, } 0 & =(x-2)\left(2 x^{2}+6 x+x+3\right) \\
\text { or, } 0 & =(x-2)\{2 x(x+3)+1(x+3)\} \\
\text { or, } 0 & =(x-2)(x+3)(2 x+1)
\end{aligned}
$$

Either, $x-2=0 \quad \therefore x=2$
$\mathrm{OR}, x+3=0 \quad \therefore x=-3$
OR, $2 x+1=0 \quad \therefore x=-\frac{1}{2}$
Hence, the roots of the polynomials are $2,-3$ and $-\frac{1}{2}$
Again, the greatest root is 2 and the smallest root is -3 .
Thus, the difference $=2-(-3)=5$
23. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ are two functions defined by $f(x)=\frac{x}{2}-5$ and $g(x)=2 x+10$, then find $f \mathrm{o} g(x)$ and $g \circ f(x)$. Are the functions $f(x)$ and $g(x)$ inverse to each other or not, Why?

Solution:

Here,
The given functions are $f(x)=\frac{x}{2}-5$ and $g(x)=2 x+10$

$$
\text { Now, } \begin{aligned}
f \circ g(x) & =f(g(x)) \\
& =f(2 x+10) \\
& =\frac{2 x+10}{2}-5 \\
& =x+5-5 \\
& =x
\end{aligned}
$$

Again, $g \circ f(x)=g(f(x))$

$$
\begin{aligned}
& =g\left(\frac{x}{2}-5\right) \\
& =2\left(\frac{x}{2}-5\right)+10 \\
& =x-10+10 \\
& =x
\end{aligned}
$$

Since, $f \mathrm{og}(x)=g \circ f(x)=x$
i.e., both the functions $g \circ f(x)$ and $f \circ g(x)$ are identity functions and equal too.

Thus, the functions $f(x)$ and $g(x)$ inverse to each other
24. Find the equation of the perpendicular bisector of the line joining the points $(5,4)$ and $(7,12)$.

Solution:

Let, PM be the perpendicular bisector of the line joining the points $\mathrm{A}(5,4)$ and $\mathrm{B}(7,12)$ where
M is the mid-point of $A B$.
Now,
By using mid-point theorem, $\mathrm{M}(x, y)=\mathrm{M}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
& =\mathrm{M}\left(\frac{5+7}{2}, \frac{4+12}{2}\right) \\
& =\mathrm{M}(6,8)
\end{aligned}
$$

$$
\text { Also, slope of } \mathrm{AB}\left(\mathrm{~m}_{1}\right) \quad \begin{aligned}
& =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{12-4}{7-5} \\
& =\frac{8}{2} \\
& =4
\end{aligned}
$$

Let, m_{2} be the slope of $P M$ which is perpendicular to $A B$.
Then, $\quad \mathrm{m}_{1} \times \mathrm{m}_{2}=-1$

$$
\begin{aligned}
& \text { or, } 4 \times \mathrm{m}_{2}=-1 \\
& \therefore \mathrm{~m}_{2} \quad=-\frac{1}{4}
\end{aligned}
$$

Again, equation of required line is given by $y-y_{1}=m_{2}\left(x-x_{1}\right)$

$$
\begin{aligned}
& \text { or, } y-8=-\frac{1}{4}(x-6) \\
& \text { or, } 4 y-32=-x+6 \\
& \text { or, } x+4 y=38
\end{aligned}
$$

Hence, the required equation of perpendicular bisector is $x+4 y=38$.
25. The diagram shows a rectangle ABCD . The coordinate of corner points of a rectangle ABCD are $\mathrm{A}(2,14), \mathrm{B}(-2,8)$ and corner C lies on the $x-$ axis. Find the equation of the side $B C$ and $A C$.

Solution:

Here, the coordinate of corner points of a rectangle ABCD are $\mathrm{A}(2,14)$,
 $B(-2,8)$ and corner C lies on the x-axis.
Now, slope of $\mathrm{AB}\left(\mathrm{m}_{1}\right) \quad=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{8-14}{-2-2}=\frac{-6}{-4}=\frac{3}{2}$
Let, m_{2} be the slope of $B C$ which is perpendicular to $A B$.
Then, $\mathrm{m}_{1} \times \mathrm{m}_{2}=-1$

Vedanta Publication (P).Ltd., Vanasthali, Kathmandu

$$
\begin{array}{ll}
\text { or, } \frac{3}{2} \times \mathrm{m}_{2} & =-1 \\
\text { or, } 3 \mathrm{~m}_{2} & =-2 \\
\therefore \mathrm{~m}_{2} & =-\frac{2}{3}
\end{array}
$$

Also, for side BC ; passing point $\left(x_{1}, y_{1}\right)=\mathrm{B}(-2,8)$ and slope $\left(\mathrm{m}_{2}\right)=-\frac{2}{3}$
Equation of required side BC is given by $y-y_{1}=m_{2}\left(x-x_{1}\right)$

$$
\begin{aligned}
& \text { or, } y-8=-\frac{2}{3}(x+2) \\
& \text { or, } 3 y-24=-2 x-4 \\
& \text { or, } 2 x+3 y=20
\end{aligned}
$$

Hence, the required equation of side BC is $2 x+3 y=20$.
Again,
Let $\mathrm{C}(x, 0)$ be the coordinates of vertex C .
Then, $\mathrm{B}(-2,8) \rightarrow\left(x_{1}, y_{1}\right)$ and $\mathrm{C}(x, 0) \rightarrow\left(x_{2}, y_{2}\right)$
We have, slope of BC $\quad=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{array}{ll}
\text { or, } \quad-\frac{2}{3} & =\frac{0-8}{x+2} \\
\text { or, } & -\frac{2}{3}
\end{array}
$$

Thus, coordinates of $\mathrm{C}(x, 0)=\mathrm{C}(10,0)$
To find the equation of $\mathrm{AC} ; \mathrm{A}(2,14) \rightarrow\left(x_{1}, y_{1}\right)$ and $\mathrm{C}(10,0) \rightarrow\left(x_{2}, y_{2}\right)$
Equation of side AC is given by

$$
\begin{aligned}
& y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
& \text { or, } y-14=\frac{0-14}{10-2}(x-2) \\
& \text { or, } y-14=\frac{-14}{8}(x-2) \\
& \text { or, } y-14=\frac{-7}{4}(x-2) \\
& \text { or, } 4 y-56=-7 x+14 \\
& \text { or, } 7 x+4 y=70
\end{aligned}
$$

Hence, the required equation of side AC is $7 x+4 y=70$.

$$
0
$$

