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First Term Exam – 2080 
Class:- X                              F.M:100   
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Group ‘A’ (10  1 = 10) 
1. (a) Write down the condition for the existence of inverse function. 

Solution: 

The inverse of a function exists if it is a one to one and onto function. 
 

 (b) What is the nature of graph of constant function? 

Solution: 

The graph of constant function is always parallel to x-axis. 
 

2. (a) If a polynomial p(x) is divided by a linear polynomial (x + a), what will be its remainder? 

Solution: 

The remainder (R) = p (– a) 
 

 (b) If (x) is a dividend, g(x) is a divisor, Q(x) is quotient and R is a remainder, then write 

down the relation among them. 

Solution: 

By division algorithm, polynomial = Divisor  Quotient + Remainder.  

Hence, f (x) = g (x)  Q (x) + R 
 

3. (a) If A = [–7] is a square matrix of order 1 × 1, then what will be the determinant of A? 

Solution: 

Here, A = [–7] is a square matrix of order 1 × 1. A = – 7  
 

 (b) What is the inverse of identity matrix of order 2 × 2? Write it. 

Solution: 

The inverse of identity matrix of order 2 × 2 is identity matrix itself. 

4. (a) Express cos in terms of tan


2
. 

Solution: 

We know, cos = 

1 – tan
2

2

 1 +  tan
2

2

   

 

 (b) What is the expanded form of sin3A in terms of sinA? 

Solution: 

We know, sin3A = 3sinA – 4sin
3
A.   
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5. (a) If  be the angle between the two straight lines y = m1x + c1 and y = m2x + c2 having the 

slopes m1 and m2 respectively, then write the formula to calculate angle between them. 

Solution: 

We know, tan =  
m1 – m2

 1 +  m1m2
   

 

 (b) Write the condition of coincident of two lines when the slopes m1 and m2are given. 

Solution: 

The condition of coincident of two lines is m1 = m2. 

   Group ‘B’  (13  2 = 26) 
 

6. (a) If (x – 3) is a factor of the polynomial(x) = x
3
 + 4x

2
 + kx – 30, find the value of k. 

Solution: 

The given polynomial is (x) = x
3
 + 4x

2
 + kx – 30 and g (x) = x – 3  

Comparing x – 3 with x – a, we get   

  a = 3 

Since, (x – 3) is a factor of f (x). 

So, remainder (R) = f (a)  = 0 

 or, f (3)    = 0 

 or, (3)
3
 + 4(3)

2
 + k(3) – 30 = 0 

 or, 27 + 36 + 3k – 30  = 0 

 or,   3k   = – 33 

 or,   k  = 
–33

3
 = – 11 

Hence, the required value of k is – 11. 
 

 (b) If  = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)} are two given functions. Find 

go by representing them into arrow diagrams. 

Solution: 

The given functions are  = {(1, 2), (3, 5), (4, 1)} and g = {(2, 3), (5, 1), (1, 3)} 

Representing the function gof in arrow diagram:  

  

 

 

 

 

 

 

From above arrow-diagram, we get 

 go = {(1, 3), (3, 1), (4, 3)} 
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 (c) From the adjoining graph of trigonometric function, answer the 

following questions: 

(i) Which type of function is shown by given graph? Write it. 

  (ii) Write down its range. 

Solution: 

(i) The function y = cosx is shown in the graph. 

(ii) The range of the function y = cosx is the set of all real numbers from – 1 to + 1 

inclusive. i.e., [– 1, +1] 
 

7. (a) Solve for t:






t – 1   t

t
2
 + 1  t

2
 + t + 1

 = 0.  

Solution: 

Here, 






t – 1   t

t
2
 + 1  t

2
 + t + 1

       = 0 

 or, (t – 1) (t
2
 + t + 1) – t(t

2
 + 1) = 0 

 or, t
3
 – 1

3
 – t

3
 – t         = 0  

 or,            – t         = 1 

 or,  t        = – 1 

Hence, the required value of t is – 1. 
 

 (b) Find the inverse of the matrix A = 






–1  3

 2 –8
 if exists. 

Solution: 

Here,  

The given matrix is A = 






–1  3

 2 –8
  

Now, determinant of A = 






 – 1  3

2  – 8
 

    = (– 1) (– 8) – 2  3  

    = 8 – 6  

    = 2 

Since, A  0 So, A
– 1

 exists. 

We have, A
– 1

  = 
1

 A 
 Adjoint of A 

   = 
1

 2 
 






–8  –3

 –2 –1
  

Hence, A
– 1

 = – 
1

 2 
 






8  3

 2 1
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8. (a)  If the line 2x – 3y = 6 is perpendicular to the line 
x

p
 + 

y

9
 = 3, calculate the value of p. 

Solution: 

Here,  

The slope of line 2x – 3y = 6 is m1  = – 
coefficient of x

 coefficeint of y
   

      = – 
2

 – 3
  

      = 
2

3
  

The slope of line 
x

p
 + 

y

9
 = 3is m2 = – 

coefficient of x

 coefficeint of y
   

      = – 

1

p

 
1

9

  

      = – 
9

p
  

Since, the lines are perpendicular to each other. 

So,  m1  m2 = – 1  

 or, 
2

3
  









– 
9

p
   = – 1 

 or,  – 18  = – 3p 

 or, p  = 6 

Hence, the required value of  p is 6. 
 

 (b) What is the obtuse angle between two straight lines whose slopes are 
7

4
 and 

3

11
 ? Find it. 

Solution: 

Here, the slopes of two straight lines are m1 = 
7

4
 and m2 = 

3

11
 

Let,  be the angle between the lines. 

We have, tan =  
m1 – m2

1 + m1m2
   

   =  

7

4
 – 

3

11

1 + 
7

4


3

11

   

   =  

7

4
 – 

3

11

1 + 
21

44
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   =  

77 – 12

44

44 + 21

44

 

   =  
65

65
 

   =  1 

  To find the obtuse angle, the value of tan should be negative. 

  Thus, taking (-) ve sign, we get 

    tan  = – 1  

    or,  = tan
-1

 ( – 1) = 135
o
 

  Hence, the obtuse angle between the lines is 135
o
. 

 

9.  (a) If sinθ = 
3

5
 , find the value of cosθ and sin2θ. 

Solution: 

Here, sinθ = 
3

5
  

We have, cosθ  = 1 –  sin
2
    

   = 1 –  






3

5

2

    

   = 1 –  
9

25
   

   =  
25 – 9

25
   

   =  
16

25
   

   = 
4

5
  

Again, sin2θ  = 2 sinθ. Cosθ 

   = 2  
3

5
 

4

5
  

   = 
24

25
  

  

(b) Prove that: : 
3cosx + cos3x

3sinx – sin3x
 = cot

3
x. 

Solution: 

Here,  L.H.S.  = 
3cosx + cos3x

3sinx – sin3x
 

   = 
3cosx + 4cos

3
x – 3cosx

3sinx – (3sinx – 4sin
3
x)
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   = 
4cos

3
x

3sinx – 3sinx + 4sin
3
x
 

    = 
4cos

3
x

 4sin
3
x
 

    = cot
2
x 

    = R.H.S.   

 Hence, proved 

 (c) Simplify: 
1

2







cot
A

2
 – tan

A

2
 

Solution: 

Here,  
1

2







cot
A

2
 – tan

A

2
   

  = 
1

2









cos

A

2

 sin
A

2

 – 

sin
A

2

 cos
A

2

 

  = 
1

2
 









cos

2A

2
 –  sin

2
 
A

2

sin
A

2
.cos

A

2

  

  = 

cos
2A

2
 –  sin

2
 
A

2

2sin
A

2
.cos

A

2

  

  = 
cosA

 sinA
 

  = cotA 
 

10. (a) If cos30 =
3

2
 , show that the value of sin15 = 

3 – 1

2 2
. 

Solution: 

Here, 

Given: cos30 =
3

2
  

Need to show: sin15 = 
3 – 1

2 2
 

We have, 

    cosA  = 1 – 2sin
2A

2
  

or, cos30 = 1 – 2sin
230

o

2
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or, 
3

2
  = 1 – 2sin

2
15

o
 

or, 2sin
2
15

o
 = 1 – 

3

2
  

or, 2sin
2
15

o
 = 

2 – 3

2
  

or, sin
2
15

o
 = 

2 – 3

4
  

or, sin15
o
 = 

2 – 3

4
  

or, sin15
o
 = 

2 – 3

4
  

2

2
  

or, sin15
o
 = 

4 – 2 3

8
  

or, sin15
o
 = 

3 – 2 3 + 1

8
  

or, sin15
o
 = 

( 3)
2
 – 2 3.1 + 1

2

8
  

or, sin15
o
 = 

( 3 –1)
2

2
2
  2

  

 sin15
o
 = 

3 –1

2 2
  

Hence, proved 
 

 (b) For a grouped data, if the value of lower quartile (Q
1
) is 31.42 and quartile deviation 

(Q.D) is 4.75. Find the value of upper quartile (Q
3
) and coefficient of quartile deviation. 

Solution: 

Here, 

 Lower quartile (Q
1
) = 31.42 

 Quartile deviation (Q.D) = 4.75 

 Upper quartile (Q
3
) =? 

 Coefficient of quartile deviation =? 

Now, Q.D. = 
Q3 –  Q1

2
   

 or, 4.75 = 
Q3 –  31.42

2
  

 or, 9.5   = Q3 – 31.42 

 Q3   = 40.92 
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Again, coefficient of quartile deviation = 
Q3 –  Q1

Q3 + Q1
  

           = 
40.92 –  30.42

 40.92 + 30.42
  

           = 
9.5

 71.34
  

           = 0.1331 
 

 (c) Find the standard deviation and variance of a continuous series having N = 10, m = 72 

and m
2
 = 720.  

Solution: 

Here, N = 10, m = 72 and m
2
 = 720 

Standard deviation =? 

Variance =? 

Now,  S. D.  () = 
m

2

N
 – 







m

N

2

  

   = 
720

10
 – 







72

10

2

  

   = 20.16 

   = 4.49 

Again, variance = 
2
 = (4.49)

2
 = 20.16 

 

Group ‘C’  (11 4 = 44) 

11. If (x) and g(x) be two functions which are defined by (x) = x + 2 and g(x) = 
3x – 2

4
  such that 

(x) = g 
–1

(x). Find the value of x. 

 Solution: 

 The given functions are (x) = x + 2 and g(x) = 
3x – 2

4
  

 Given relation: (x) = g 
–1

(x) 

 Let, g (x) = y then y = 
3x – 2

4
  

 Now, interchanging the role of x and y, we get 

         x = 
3y – 2

4
  

      or, 3y – 2  = 4x  

   or,  3y  = 4x + 2 

   or,  y  = 
4x + 2

3
  

  g 
–1

(x) = 
4x + 2

3
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 According to the question, (x) = g 
–1

(x) 

     or, x + 2  = 
4x + 2

3
  

     or, 3x + 6 = 4x + 2 

     or, 4      = x 

 Hence, the required value of x is 4. 
 

12. It is given that (x) = 3x + 5 and g(x) = 
3x + 2

4
. What value of x makes  og

 –1
(x) an identity 

function? Find it. 

 Solution: 

 Here,  

 The given functions are (x) = 3x + 5 and g(x) = 
3x + 2

4
 

 Given relation: og
 –1

(x) an identity function i.e.,  og
 –1

(x) = x 

 Let, g (x) = y then y = 
3x + 2

4
 

 Now, interchanging the role of x and y, we get 

         x = 
3y + 2

4
 

      or, 3y + 2  = 4x  

   or,  3y  = 4x – 2  

   or,  y  = 
4x – 2

3
  

  or, g 
–1

(x) = 
4x – 2

3
  

 According to the question, og
 –1

(x) = x 

     or, f 






4x – 2

3
 = x 

     or, 3






4x – 2

3
 + 5 = x  

     or, 4x – 2 + 5  = x 

     or, 3x   = – 3  

     or, x =  – 1  

 Hence, the required value of x is – 1. 
 

13. The polynomial(x) = 3x
3
 + 2x

2
 – nx+ m is exactly divisible by (x – 1) but leaves a remainder 

10 when divided by (x + 4), then find the values of m and n. 

 Solution: 

 The given polynomial(x) = 3x
3
 + 2x

2
 – nx+ m 

 Case-I:  (x – 1) exactly divides f (x).  

   So, remainder (R)   = 0 
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   or, f (1)   = 0 

   or, 3(1)
3
 + 2 (1)

2
 – n  1 + m = 0 

   or, 5 – n + m       = 0 

      m     = n – 5     … (i) 

Case-II:   

  Divisor = (x + 4) and remainder = 10  

   So, remainder (R)   = 10 

   or, f (– 4)   = 10 

   or, 3(– 4)
3
 + 2 (– 4)

2
 – n  (– 4) + m = 10 

   or,  – 192 + 32 + 4n + m       = 10 

   or,  4n + m            = 170   … (ii) 

 Putting the value of ‘m’ in equation (ii) from equation (i), we get 

   4n + m    = 170 

   or, 4n + n – 5  = 170 

   or,  5n  = 175 

      n  = 35  

 Again, putting the value of ‘n’ in equation (i), we get   

     m = 35 – 5 = 30 

 Hence, the required value of ‘m’ is 30 and the value of ‘n’ is 35. 
   

14. Find the equation of a straight line which passes through a point (3, 4) and parallel to the line 

3x + 4y = 12.  

 Solution: 

 Here,  

 The slope of line 3x + 4y = 12 is m1 = – 
coefficient of x

 coefficeint of y
   

     = – 
3

 4
  

 Let, m2 be the slope of the line parallel to the given line 3x + 4y = 12. 

 Then,  m1  = m2  

   or, – 
3

 4
  = m2   

    m2    = – 
3

 4
  

 Also, passing point (x1, y1) = (3, 4) and slope (m2) = – 
3

 4
  

 Again,  

 Equation of required line is given by y – y1 = m2 (x – x1) 

            or, y – 4 = – 
3

 4
  (x – 3) 
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       or, 4y – 16 = – 3x + 9 

       or, 3x + 4y = 25 

 Hence, the required equation is 3x + 4y = 25. 
 

15. Solve by matrix method: x + y = 20 and x – y = 4. 

 Solution: 

Here,  

The given equations are: 

   x + y = 20     … (i) 

    x – y = 4     … (ii) 

Expressing equations (i) and (ii) in matrix form. We get 

 






1 1

1 –1
 






x

y
  = 







20

4
  

 

     or, AX = B  where A = 






1 1

1 –1
 , B = 







20

4
 and X = 







x

y
     

  X = A
– 1

 B     … (iii) 

Also, determinant of A = 






1 1

 1  – 1
 = – 1 – 1 = – 2  

Since, A  0 So, A
–1

 exists and the given system has a unique solution.  

Again, A
– 1

  = 
1

 A
 Ad joint of A 

    = 
1

 –2





–1  –1

 –1 1
  

Putting the value of A
– 1

 in equation (iii), we get 

   






x

y
  = 

1

 –2





–1  –1

 –1 1
 






20

4
  

  or, 






x

y
 = 

1

 –2





–20 –4

 –20 + 4
  

  or, 






x

y
 = 

1

 –2





–24

 –16
  

 or, 






x

y
  = 







12

8
  

Equating the corresponding elements, we get 

 x = 12 and y = 8 

Hence, x = 12 and y = 8 
 

16. Solve the equations 2(x – 1) = y and 3(x – 1) = 4y by Cramer’s rule. 

   Solution: 

Here,  

The given equations are; 

2(x – 1) = y      or, 2x – 2 = y   2x – y = 2    … (i)  
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and 3(x – 1)  = 4y or, 3x – 3 = 4y  3x – 4y = 3    … (ii) 

 

 

 

 

Now,  

D = 






2  – 1

3  – 4
  = – 8 + 3  = – 5 

Dx = 






2  – 1

3  – 4
 = – 8 + 3  = – 5 

Dy = 






2 2

3 3
 = 6 – 6  = 0 

Again, by using Cramer’s rule 

x = 
Dx

D
 = 

– 5 

 – 5
  = 1 

and y = 
Dy

D
  = 

0

 – 5
  = 0 

Hence, the value of x is 1 and that of y is 0. 

 

17. Without using calculator or table, find the value of following trigonometric 

expression:sin
4 

8
 + sin

4 3

8
 + sin

4 5

8
 + sin

4 7

8
 

   Solution: 

Here, 

 sin
4 

8
 + sin

4 3

8
 + sin

4 5

8
 + sin

4 7

8
 

= sin
4 

8
 + sin

4 3

8
 + sin

4 









 – 
3

8
 + sin

4 









 – 


8
 

=  sin
4 

8
 + sin

4 3

8
 + sin

4 3

8
 + sin

4 

8
 

=  2sin
4 

8
 + 2sin

4 3

8
  

= 
1

2
  2









2sin
4 

8
 + 2sin

4 3

8
 

= 
1

2
 








4sin
4 

8
 + 4sin

4 3

8
 

= 
1

2
 [








2sin
2 

8

2

 + 








2sin
2 3

8
 
2

] 

= 
1

2
 [








1 – cos2
 
 


8

2

 +  








1 – cos2
 
 

3

8

2

]   

= 
1

2
 [( )1 – cos45

o 2
 +  ( )1 – cos135

o 2
]   

Coefficient of x Coefficient of y Constant 

2 – 1 2 

3      – 4 3 
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= 
1

2
 [








1 – 
1

2

2

 + 








1 + 
1

2

2

]   

= 
1

2
 








1 – 2
1

2
 +

1

2
 +1 + 2

1

2
 +

1

2
  

= 
1

2
 








1 + 
1

2
 +1 + 

1

2
  

= 
1

2
 






2 + 1 + 2 + 1

2
  

= 
1

2
 






6

2
  

= 
3

2
  

 

18. Prove that: 8sin
4
 = cos4 – 4cos2 + 3. 

  Solution: 

Here, 

 L.H.S.  = 8sin
4
 

  = 2  4sin
4
 

= 2 (2sin
2
)

2
 

= 2 (1 – cos2)
2
 

= 2 (1 – 2cos2 + cos
2
2) 

= 2 – 4cos2 + 2cos
2
2 

= 2 – 4cos2 + 1 + cos2(2) 

= 3 – 4cos2 + cos4 

= cos4 – 4cos2 + 3 

= R.H.S.  

Hence, proved  
 

19. Reduce cos
6
 
A

2
 + sin

6 A

2
  in terms of sinA. 

   Solution: 

Here, cos
6
 
A

2
 + sin

6 A

2
  = 









cos
2
 
A

2

3
 + 









sin
2 A

2
 
3
 

    = 








cos
2
 
A

2
 + sin

2 A

2
 
3
 – 3cos

2
 
A

2
.sin

2 A

2
 








cos
2
 
A

2
 + sin

2 A

2
   

= 1– 3cos
2
 
A

2
.sin

2 A

2
  1   

= 1– 
1

4
  4  3cos

2
 
A

2
.sin

2 A

2
  

= 1– 
3

4
 








2sin 
A

2
.cos

A

2

2
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= 1– 
3

4
 








sin 2  
A

2
  

= 1– 
3

4
 sinA  

 

20. Find the mean deviation from mean and its coefficient from the following frequency 

distribution: 

Marks Obtained 0 – 10 10 – 20 20 – 30 30 – 40 40 – 50 

No. of Students 3 5 7 3 4 

 Solution: 

 Here, 

 Computation of the mean deviation from the mean: 

Marks  No. of students (f) m fm m – X   fm – X  

0-10 3 5 15 20 60 

10-20 5 15 75 10 50 

20-30 7 25 175 0 0 

30-40 3 35 105 10 30 

40-50 4 45 180 20 80 

 N = 22  fm =550  fm – Md = 220 

Now, mean ( X ) = 
fm

N
 = 

550

22
 = 25 

Also, M.D. from mean = 
fm – Md 

N
 = 

220

 22
 =10 

Again, coefficient of M.D. = 
M.D. from mean

 Mean
 = 

10

25
 = 0.4 

Hence, the mean deviation is 10 and its coefficient is 0.4 
 

21. The following table gives the weight (in kg) of 20 workers in a certain company. 

Weight in kg 30 – 40 40 – 50 50 – 60 60 – 70 70 – 80 

No. of workers 2 3 6 5 4 

Then, calculate the arithmetic mean, standard deviation and coefficient of variation. 

 Solution: 

Computation of the standard deviation: 

 

 

 

 

 

 

 

 

Ages group No. of people (f) m fm fm
2
 

30-40 2 35 70 2450 

40-50 3 45 135 6075 

50-60 6 55 330 18150 

60-70 5 65 325 21125 

70-80 4 75 300 22500 

 N = 20  fm = 1160  fm
2
 = 70300 
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Now, mean ( X ) = 
fm

N
 = 

1160

20
 = 58 

Also, S.D. ()   = 
fm

2

N
 –  







fm

N

2
  

= 
70300

20
 – 







1160

20

2
  

= 3515 – 3364  

= 151  

= 12.29 

 Again, coefficient of variation  = 


X
  100% 

      = 
12.29

58
 100% 

      = 21.19% 

  Group ‘D’  (4  5 = 20) 

22. Given that (x) = 2x
3
 + 3x

2
 – 11x – 6 = 0 is a polynomial equation in x, find the difference 

between the greatest and the smallest roots of f(x). 

Solution: 

 Here, (x) = 2x
3
 + 3x

2
 – 11x – 6 

 The possible factors of 6 are  1,  2,  3 and  6. 

 Comparing (x – 2) with x – a, we get  

   a = 2  

 Now, reminder (R)  = f (a)  

 = f (2) 

 = 2(2)
3
 + 3(2)

2
 – 11(2) – 6 

 = 16 + 12 – 22 – 6  

 = 0 

 Since, f (2) = 0. Thus, (x – 2) is a factor of f (x). 

 By using synthetic division method, we get 

 

 Thus, quotient, Q (x) = 2x
2
 + 7x + 3 and remainder (R) = 0 

 Also, (x) = 2x
3
 + 3x

2
 – 11x – 6   = (x – 2)   Q (x) + R 

  or, 0   = (x – 2) (2x
2
 + 7x + 3) + 0 
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  or, 0   = (x – 2) {2x
2
 + (6 + 1) x + 3} 

  or, 0   = (x – 2) (2x
2
 + 6x + x + 3) 

  or, 0   = (x – 2) {2x (x + 3) +1(x + 3)} 

  or, 0   = (x – 2) (x + 3) (2x + 1) 

Either, x – 2 = 0  x = 2 

OR, x + 3 = 0  x = – 3  

OR, 2x + 1 = 0  x = –  
1

2
  

Hence, the roots of the polynomials are 2, – 3 and –  
1

2
  

Again, the greatest root is 2 and the smallest root is – 3. 

Thus, the difference = 2 – ( – 3) = 5 

23. Let: RR and g: RR are two functions defined by(x) = 
x

2
 – 5 and g(x) = 2x + 10, then find 

og(x) and go(x). Are the functions (x) and g(x) inverse to each other or not, Why? 

Solution: 

 Here,  

 The given functions are (x) = 
x

2
 – 5 and g(x) = 2x + 10 

 Now, og(x)  = (g(x)) 

    = (2x + 10) 

  = 
2x + 10

2
 – 5  

  = x + 5 – 5  

  = x 

 Again, go(x) = g((x)) 

  = g






x

2
 – 5  

  = 2






x

2
 – 5  + 10 

  = x – 10 + 10 

  = x 

 Since, og(x) = go(x) = x 

 i.e., both the functions go(x) and fog(x) are identity functions and equal too.  

 Thus, the functions (x) and g(x) inverse to each other 
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24. Find the equation of the perpendicular bisector of the line joining the points (5, 4) and (7, 12). 

Solution: 

Let, PM be the perpendicular bisector of the line joining the points A (5, 4) and B (7, 12) where 

M is the mid-point of AB. 

 Now,  

 By using mid-point theorem, M (x, y) = M 






x1 + x2

2
 , 

y1 + y2

2
  

          = M 






5 + 7

2
 , 

4 + 12

2
  

          = M (6, 8) 

Also, slope of AB (m1)  = 
y2 – y1

 x2 – x1
  

     = 
12 – 4

 7 – 5
  

     = 
8

 2
  

     = 4 

Let, m2 be the slope of PM which is perpendicular to AB. 

Then,  m1  m2 = – 1  

  or, 4  m2 = – 1 

   m2         = – 
1

4
  

Again, equation of required line is given by y – y1 = m2 (x – x1) 

            or, y – 8 = – 
1

 4
  (x – 6) 

       or, 4y – 32 = – x + 6 

       or, x + 4y = 38 

 Hence, the required equation of perpendicular bisector is x + 4y = 38. 

 

25. The diagram shows a rectangle ABCD. The coordinate of corner points 

of a rectangle ABCD are A(2, 14), B(–2, 8) and corner C lies on the x – 

axis. Find the equation of the side BC and AC. 

Solution: 

Here, the coordinate of corner points of a rectangle ABCD are A(2, 14), 

B(–2, 8) and corner C lies on the x – axis. 

 Now, slope of AB (m1)   = 
y2 – y1

 x2 – x1
 = 

8 – 14

  – 2 – 2
 = 

 – 6

  – 4
 = 

3

2
  

Let, m2 be the slope of BC which is perpendicular to AB. 

Then,  m1  m2  = – 1  
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 or, 
3

2
   m2  = – 1 

 or, 3m2 = – 2  

  m2          = – 
2

3
  

 Also, for side BC; passing point (x1, y1) = B (–2, 8) and slope (m2) = – 
2

3
  

 Equation of required side BC is given by y – y1 = m2 (x – x1) 

            or, y – 8 = – 
2

3
  (x + 2) 

       or, 3y – 24 = – 2x – 4  

       or, 2x + 3y = 20 

 Hence, the required equation of side BC is 2x + 3y = 20. 

 Again,  

 Let C (x, 0) be the coordinates of vertex C.  

 Then, B (–2, 8)  (x1, y1) and C (x, 0)  (x2, y2)    

 We have, slope of BC  = 
y2 – y1

 x2 – x1
  

  or,  – 
2

3
   = 

0 – 8

  x + 2
  

  or,  – 
2

3
   = 

– 8

  x + 2
  

  or,       – 2 (x + 2)  =  – 24 

  or,  x + 2  = 12 

  or, x  = 10 

Thus, coordinates of C (x, 0) = C (10, 0) 

 To find the equation of AC; A (2, 14)  (x1, y1) and C (10, 0)  (x2, y2)    

 Equation of side AC is given by  y – y1 = 
y2 – y1

 x2 – x1
  (x – x1) 

            or, y – 14 = 
0 – 14

 10 – 2
  (x – 2) 

       or, y – 14 = 
– 14

 8
  (x – 2) 

       or, y – 14 = 
– 7

 4
  (x – 2) 

       or, 4y – 56 = – 7x + 14  

       or, 7x + 4y = 70 

  Hence, the required equation of side AC is 7x + 4y = 70. 

 

 


