

SEE MODEL QUESTION - 2080

14. Find the obtuse angle between the lines 2x - y + 3 = 0 and x - 3y + 4 = 0

15. Prove that:
$$\frac{\cos 2\theta}{1 + \sin 2\theta} = \frac{1 - \tan \theta}{1 + \tan \theta}$$

- **16.** If tanA + cotA = 4, find the value of A. $(0^\circ \le A \le 180^\circ)$
- 17. The position vectors of vertices of triangle ABC are $\vec{i} + 5\vec{j}$, $2\vec{i}$ and \vec{j} respectively, find the position vector of its centroid G.
- **18.** In a continuous distribution, if the first quartile is 20 and quartile deviation is 20, find the third quartile and coefficient of quartile deviation of the distribution.

Group-C 11 × **3** = **33**

- **19.** Two functions *f* and *g* defined as f(x) = 3x b and g(x) = 5x 3 are real valued functions. If $f^{-1}(11) = g^{-1}(22)$, find the value of b.
- **20.** Solve the quadratic equation $x^2 + 2x 3 = 0$ graphically.
- **21.** A real valued function *f*: $R \rightarrow R$ is defined by f(x) = x + 4. Find the values of f(1.999), f(2.001) and f(2). Is *f* continuous at x = 2?
- 22. Solve the following equation by using inverse matrix method:

$$2x + 5 = 4 (y + 1) - 1$$
 and $3x + 4 = 5 (y + 1) - 3$
Two opposite corners of a square HARI are H (3, 2)
and R (3, 6). Find the equations of diagonal AI.

Α

24. Prove that:
$$\sin^3 \theta \cdot \cos^2 \theta = \frac{1}{16}(2\sin\theta - \sin5\theta + \sin3\theta)$$
 H(3,2)

25. If
$$\alpha + \beta + \gamma = 180^\circ$$
, prove that: $\frac{\sin 2\alpha + \sin 2\beta + \sin 2\gamma}{\sin \alpha . \sin \beta . \sin \gamma} = 4$

26. A dog of height 2 ft. stands on a table. The angle subtended by the dog and the table at a bone placed on the floor of are 30° and 30° respectively. Find the height of table.

SEE MODEL QUESTION - 2080

27. Find the 2 × 2 matrix which transformed the unit square matrix $\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$

into a parallelogram $\begin{pmatrix} 0 & 6 & 8 & 2 \\ 0 & 2 & 6 & 4 \end{pmatrix}$.

28. Find the mean deviation from the mean. Also, calculate its coefficient.

Marks obtained	0-10	30-40	40-50	10-20	20-30
No. of students	3	3	4	5	7

29. An analysis of monthly wages paid to the works in firm-A and firm-B belonging to the same industry given the following results:

Average monthly wage	Rs. 15,000	Rs. 12,000
Standard deviation	5	6

- (a) Examine which firm A or B has greater variability in wage distribution.
- (b) Which firm has more homogeneity? Give Reason.

Group-D $4 \times 4 = 16$

- **30.** The sum of three numbers in GP is 13. If 1, 2 and 7 are subtracted from the numbers respectively; the resulting numbers form an AP. Find the original numbers.
- **31.** Circle-B is concentric with the circle A: $x^2 + y^2 2y = 3$ and passes through the point of intersection of line pairs $x^2 y^2 2x + 2y = 0$. Find the equation of circle-B.

32. By using vector method, prove that the diagonals of a rectangle are equal.

33. In the graph given alongside, image of $\triangle ABC$ is $\triangle A'B'C'$ and

image of $\Delta A'B'C'$ is $\Delta A''B''C''$.

- (a) By what transformation the image of the triangle $\triangle ABC$ is $\triangle A'B'C'$? Write with reason
- (b) By what transformation the image of the triangle $\Delta A'B'C'$ is $\Delta A''B''C''$? Write with reason

(c) Write the name of transformation which represents the combined transformation of above two transformations? Write with reason.

THE END

		Answer K	ey	
(1)) One to one and onto $\sqrt{2}$	(2) $R = p(c)$	(3) Not continuous ((4) $ad - bc$
(5)	$\tan \theta = \pm \frac{2\sqrt{h^2 - ab}}{a + b}$	(6) Circle	(7) $1 - 2\sin^2 A$	(8) 45°
(10	$O) OP \times OP' = r^2$	(11) 22	(13) 10, 20	(14) 135°
(1) (2)	6) 15°, 75° 0) -3, 1	(17) $\vec{i} + 2\vec{j}$ (21) 5.999, 6.00	(18) 60, 0.5 04, Yes	(19) 4 (22) 1, 1
(2.	3) $x + y = 1$	(26) 1 ft,	$(27)\left(\begin{array}{c} 6 & 2\\ 2 & 4 \end{array}\right)$	(28) 10, 0.4
(29 (3	 9) (a) B (b) A 3) (a) Reflection on <i>x</i>-axis (c) Reflection about y = 	(30) 1, 3, 9 (b) Rotation thr - <i>x</i>	(31) $x^2 + y^2 - 2y = 0$ rough -90° or 270° abo	out origin