SEE - 2080 (2024)

Optional- I (Mathematics)

Time: 3 hours

Answer all the questions.

$$
\text { Group-A } \quad 10 \times 1=10
$$

1. Write the period of the function $f(x)=\tan x$.
2. What do you mean by remainder theorem?
3. Write $\lim _{x \rightarrow a^{+}} f(x)$ in sentence.
4. Define inverse matrix.
5. For what condition, the straight lines $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$ will be perpendicular?
6. Name the conic section which is formed when a plane intersects a cone parallel to the generator of the cone?
7. Express $\sin A$ in terms of $\tan \frac{A}{2}$.
8. Write $\cos \alpha+\cos \beta$ into product form.
9. From the given figure, find the formula to find $\cos \theta$.

10. Write a 2×2 transformation matrix associated with an enlargement with scale factor k and centre at origin.

$$
\text { Group-B } \quad 8 \times 2=16
$$

11. If $x+2$ is a factor of $x^{3}-(k+6) x^{2}+2 k x+40$, find the value of k.
12. Find the sum of series $1+6+11+\ldots+76$
13. If the matrices $\left(\begin{array}{ll}4 & 5 \\ 6 & 7\end{array}\right)$ and $\left(\begin{array}{cc}\frac{-7}{2} & \frac{5}{2} \\ x & -2\end{array}\right)$ are inverse matrix to each other, calculate the value of x.
14. Find the obtuse angle between the lines $2 x-y+3=0$ and $x-3 y+4=0$
15. Prove that: $\tan \theta+2 \cot 2 \theta=\cot \theta$
16. Prove that: $2 \cos 65^{\circ} \cdot \cos 25^{\circ}=\cos 40^{\circ}$
17. If $\vec{a}=-4 \vec{i}+3 \vec{j}$ and $\vec{b}=3 m \vec{i}+(5 m-2) \vec{j}$ are perpendicular to each other then find the value of m.
18. In a continuous distribution, if the first quartile is 20 and coefficient of quartile deviation is 0.5 , find the third quartile and semi-inter quartile range of the distribution.

$$
\text { Group-C } \quad 11 \times 3=33
$$

19. If $f(x)=4 x+5$ and $f \circ g(x)=8 x+17$, find the value of $g^{-1}(7)$.
20. Find the maximum value of the objective function $\mathrm{P}=2 x+y+10$ under the constraints $x+y \leq 5, x-y \geq 1$ and $y \geq 0$.
21. Examine the continuity or discontinuity of $f(x)=\frac{3 x+1}{2}$ at $x=5$ by calculating left hand limit, right hand limit and functional value.
22. Solve the equations $2 x-3 y-7=0$ and $4 y-3 x=-10$ by using

Cramer's rule.
23. Find the equation of a circle concentric with the circle having equation $2 x^{2}+2 y^{2}+4 x-2 y+1=0$ and passing through the point $(4,-2)$.
24. Give that $\mathrm{A}+\mathrm{B}+\mathrm{C}=90^{\circ}$, prove the given identities:
$\cos (\mathrm{B}+\mathrm{C}-\mathrm{A})+\cos (\mathrm{C}+\mathrm{A}-\mathrm{B})+\cos (\mathrm{A}+\mathrm{B}-\mathrm{C})=4 \cos \mathrm{~A} \cos \mathrm{~B} \cos \mathrm{C}$
25. Solve: $\frac{\sin 2 \mathrm{~A}+\sin 5 \mathrm{~A}-\sin \mathrm{A}}{\cos 2 \mathrm{~A}+\cos 5 \mathrm{~A}+\cos \mathrm{A}}=\sqrt{3} \quad\left(0^{\circ} \leq \mathrm{A} \leq 360^{\circ}\right)$
26. Two buses, stopped on the same side of a tower, are at the distances of 120 m and 60 m from the foot of the tower. The angles of depressions of the buses from the top of a tower are found to be complementary. Find the height of the tower.
27. Find the inversion of points $A(6,-1)$ and $B(4,5)$ with respect to the circle $(x-2)^{2}+(y-3)^{2}=16$.
28. From the data given below, find the mean deviation from the mean and its coefficient.

Marks obtained	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
No. of students	2	3	6	5	4

29. Calculate the coefficient of variation from the data given below.

Daily wages (in Rs)	$100-300$	$300-500$	$500-700$	$700-900$
No. of employees	7	10	12	11

$$
\text { Group-D } \quad 4 \times 4=16
$$

30. Three numbers whose sum is 21 are in GP. If 2,3 and 1 are added to them respectively, the numbers are in AP. Find the numbers.
31. If an angle between the pair of lines represented by $2 x^{2}+k x y+3 y^{2}=0$ is 45°, then find the positive value of k and also find the separate equations of the lines.
32. In right angled triangle $A B C$ right angles at B; $A X=C B$. Prove by using vector method that $A X=B X=C X$.

33. R_{1} denotes an rotation through $+90^{\circ}$ about origin and R_{2} denotes a reflection on $y+x=0$. Find the single transformation equivalent to the combined transformation $\mathrm{R}_{1} \mathrm{oR}_{2}$. Also, find the image of trapezium ABCD having vertices $\mathrm{A}(3,2), \mathrm{B}(-1,2), \mathrm{C}(0,4), \mathrm{D}(2,4)$ under the combined transformation $\mathrm{R}_{1} \circ \mathrm{R}_{2}$ and present both the trapeziums on the same graph paper.

THE END

