SEE MODEL QUESTION - 2080

SEE - 2080 (2024)

Optional- I (Mathematics)

Time: 3 hours		F.M.: 75
Answer all the questions.		
- Group-A	$10 \times 1 = 10$	

- **1.** Write the period of the function $f(x) = \tan x$.
- 2. What do you mean by remainder theorem?
- 3. Write $\lim_{x \to a^+} f(x)$ in sentence.
- 4. Define inverse matrix.
- 5. For what condition, the straight lines $y = m_1x + c_1$ and $y = m_2x + c_2$ will be perpendicular?
- 6. Name the conic section which is formed when a plane intersects a cone parallel to the generator of the cone?
- 7. Express sinA in terms of $\tan \frac{A}{2}$.
- 8. Write $\cos \alpha + \cos \beta$ into product form.

- a B b
- 9. From the given figure, find the formula to find $\cos\theta$.
- **10.** Write a 2×2 transformation matrix associated with an enlargement with scale factor *k* and centre at origin.

Group-B 8× 2 = 16

- 11. If x + 2 is a factor of $x^3 (k + 6)x^2 + 2kx + 40$, find the value of k.
- **12.** Find the sum of series 1 + 6 + 11 + ... + 76

13. If the matrices
$$\begin{pmatrix} 4 & 5 \\ 6 & 7 \end{pmatrix}$$
 and $\begin{pmatrix} -7 & 5 \\ 2 & 2 \\ x & -2 \end{pmatrix}$ are inverse matrix to each other,

calculate the value of *x*.

- 14. Find the obtuse angle between the lines 2x y + 3 = 0 and x 3y + 4 = 0
- **15.** Prove that: $\tan\theta + 2\cot 2\theta = \cot \theta$
- **16.** Prove that: $2 \cos 65^{\circ} .\cos 25^{\circ} = \cos 40^{\circ}$
- 17. If $\vec{a} = -4\vec{i} + 3\vec{j}$ and $\vec{b} = 3m\vec{i} + (5m-2)\vec{j}$ are perpendicular to each other then find the value of *m*.
- **18.** In a continuous distribution, if the first quartile is 20 and coefficient of quartile deviation is 0.5, find the third quartile and semi-inter quartile range of the distribution.

Group-C 11 × **3** = **33**

- **19.** If f(x) = 4x + 5 and $f \circ g(x) = 8x + 17$, find the value of $g^{-1}(7)$.
- 20. Find the maximum value of the objective function P = 2x + y + 10 under the constraints $x + y \le 5$, $x y \ge 1$ and $y \ge 0$.
- **21.** Examine the continuity or discontinuity of $f(x) = \frac{3x+1}{2}$ at x = 5 by

calculating left hand limit, right hand limit and functional value.

March 12, 2024

- 22. Solve the equations 2x 3y 7 = 0 and 4y 3x = -10 by using Cramer's rule.
- 23. Find the equation of a circle concentric with the circle having equation

 $2x^{2} + 2y^{2} + 4x - 2y + 1 = 0$ and passing through the point (4, -2).

24. Give that $A + B + C = 90^{\circ}$, prove the given identities:

$$\cos(B + C - A) + \cos(C + A - B) + \cos(A + B - C) = 4\cos A \cos B \cos C$$

25. Solve: $\frac{\sin 2A + \sin 5A - \sin A}{\cos 2A + \cos 5A + \cos A} = \sqrt{3}$ (0° ≤ A ≤ 360°)

- 26. Two buses, stopped on the same side of a tower, are at the distances of 120 m and 60 m from the foot of the tower. The angles of depressions of the buses from the top of a tower are found to be complementary. Find the height of the tower.
- 27. Find the inversion of points A (6, -1) and B (4, 5) with respect to the circle $(x-2)^2 + (y-3)^2 = 16$.
- **28.** From the data given below, find the mean deviation from the mean and its coefficient.

Marks obtained	20-30	30-40	40-50	50-60	60-70
No. of students	2	3	6	5	4

SEE MODEL QUESTION - 2080

29. Calculate the coefficient of variation from the data given below.

Daily wages (in Rs)	100-300	300-500	500-700	700-900
No. of employees	7	10	12	11

Group-D $4 \times 4 = 16$

- **30.** Three numbers whose sum is 21 are in GP. If 2, 3 and 1 are added to them respectively, the numbers are in AP. Find the numbers.
- **31.** If an angle between the pair of lines represented by $2x^2 + kxy + 3y^2 = 0$ is 45°, then find the positive value of *k* and also find the separate equations of the lines.
- 32. In right angled triangle ABC right angles at B;AX = CB. Prove by using vector method thatAX = BX = CX.

33. R₁ denotes an rotation through $+90^{\circ}$ about origin and R₂ denotes a reflection on y + x = 0. Find the single transformation equivalent to the combined transformation R₁oR₂. Also, find the image of trapezium ABCD having vertices A (3, 2) , B (-1, 2), C (0, 4) , D (2, 4) under the combined transformation R₁oR₂ and present both the trapeziums on the same graph paper.

THE END