А

 \mathbf{D}

Important Higher Ability Questions (Geometry: Area of triangles and quadrilaterals) **QUESTION 1**

In the given figure, AB // DC, AH // BC, BE // CF and EF // BG. Prove that: \Box ABCD = \Box GBEF. **Solution** AB // DC, AH // BC, BE // CF and EF // BG. Given: To prove: \square ABCD = \square GBEF Proof:

S.N.	Statements	S.N.	Reasons		
1.	\square ABCD = \square EBCH	1.	Both are standing on the same base BC and between AH // BC.		
2.	\square EBCH = \square GBEF	2.	Both are standing on the same base EB and between EB // FC.		
3.	\square ABCD = \square GBEF	3.	From statements (1) and (2).		
Hence, proved					

QUESTION 2

In the given figure, AB // DC // EF, AD // BE and AF // DE. Prove that \square DEFH = \square ABCD.

Solution

Given: AB // DC // EF, AD // BE and AF // DE. To prove: \square DEFH = \square ABCD Proof:

S.N.	Statements	S.N.	Reasons		
1.	\square DEFH = \square DEGA	1.	Both are standing on the same base DE and between AF // DE.		
2.	\square DEGA = \square ABCD	2.	Both are standing on the same base AD and between BE // AD.		
3.	\square DEFH = \square ABCD	3.	From statements (1) and (2).		
Hence	Hence, proved				

QUESTION 3

In the given figure, AE // BC, BF // CE, CG // EF and AB \perp BC. Prove that rectangle $ABCD = \Box EFGC$. **Solution**

В

E

AE // BC, BF // CE, CG // EF and AB \perp BC. Given: To prove: Rectangle ABCD = \Box EFGC.

Proof:	
S.N.	

S.N.	Statements	S.N.	Reasons	
1.	\Box ABCD = \Box HBCE	1.	Both are standing on the same base BC and between AE // BC.	
2.	\square HBCE = \square EFGC	2.	Both are standing on the same base CE and between BF $\prime\prime$ CE.	
3.	\Box ABCD = \Box EFGC	3.	From statements (1) and (2).	
Hence, proved				

Vedanta Publication (P) Ltd. Vanasthali, Kathmandu, Nepal

वेदान्त पब्लिकेसन्स् (प्रा.) लि. वनस्थली, काठमाडौँ, नेपाल

QUESTION 4

In the given figure, AB // DC, BF // CE and FE // AG // BC. Prove that: \Box BCEF = \Box ABCD + \Box ADEF Solution

Given: AB // DC, BF // CE and FE // AG // BC To prove: \Box BCEF = \Box ABCD + \Box ADEF Proof:

S.N.	Statements	S.N.	Reasons
1.	□ ABCD = □ HBCG	1.	Both are standing on the same base BC and between AG $//$ BC.
2.	\square FADE = \square FHGE	2.	Both are standing on the same base FE and between AG // FE.
3.	\square BCEF = \square HBCG + \square FHGE	3.	By whole part axiom
4.	\square BCEF = \square ABCD + \square ADEF	4.	From statements (1), (2) and (3).
Hence	e, proved		

D

QUESTION 5

In the given figure, prove that the area of parallelograms ABCD and PQRD are equal. *Solution*

Given: ABCD and PQRD are parallelograms.

To prove: $\Box ABCD = \Box PQRD$

Construction: P and C are joined. Proof:

S.N.	Statements	S.N.	Reasons	
1.	$\Delta PDC = \frac{1}{2} \square ABCD$	1.	Both are standing on the same base DC and between AB // DC.	
2.	$\Delta PDC = \frac{1}{2} \square PQRD$	2.	Both are standing on the same base PD and between QR $//$ PD.	
3.	\square ABCD = \square PQRD	3.	From statements (1) and (2).	
Hence, proved				

QUESTION 6

In the given figure, AB // DC, BC // ED and EB // AC. Prove that: Ar. (ΔAEB) =Ar. (ΔACD). *Solution*

Given: AB // DC, BC // ED and EB // AC To prove: Ar. $(\Delta AEB) = Ar. (\Delta ACD).$

Proof:

	S.N.	Statements	S.N.	Reasons		
Q	l.	$\Delta AEB = \frac{1}{2} \square EBCG$	1.	Both are standing on the same base EB and between AC $\prime\prime$ EB.		
7	2.	$\Delta ACD = \frac{1}{2} \square FBCD$	2.	Both are standing on the same base CD and between BA // CD.		
	3.	\square EBCG = \square FBCD	3.	Both are standing on the same base BC and between ED $/\!/$ BC.		
	4.	$\Delta AEB = \Delta ACD$	4.	From statements (1), (2) and (3)		
	Hence, proved					

वेदान्त पब्लिकेसन्स् (प्रा.) लि. वनस्थली, काठमाडौँ, नेपाल

QUESTION 7

In the given figure, QR // TS, QT // RP and RS // QP. Prove that: Ar. Δ PQT = Ar. Δ PRS. **Solution**

QR // TS, QT // RP and RS // QP To prove: Area of $\triangle PQT = Area \text{ of } \triangle PRS$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta PQT = \frac{1}{2} \square RQTV$	1.	Both are standing on the same base QT and between RP // QT.
2.	$\Delta PRS = \frac{1}{2} \square RQUS$	2.	Both are standing on the same base RS and between PQ // SR.
3.	$\square RQTV = \square RQUS$	3.	Both are standing on the same base QR and between TS // QR.
4.	$\Delta PQT = \Delta PRS$	4.	From statements (1), (2) and (3
Henc	e, proved		

QUESTION 8

In the given figure, ABCD is a parallelogram. E and F are any points on AD and AB respectively. Prove that: $\Delta CDF = \Delta ABE + \Delta CDE$ **Solution**

ABCD is a parallelogram. E and F are any points on AD and AB respectively.^B Given: $\Delta CDF = \Delta ABE + \Delta CDE$ To prove:

-	
Proof:	

S.N.	Statements	S.N.	Reasons		
1.	$\Delta \text{CDF} = \frac{1}{2} \square \text{ABCD}$	1.	Both are standing on the same base CD and between AB// CD.		
2.	$\Delta EBC = \frac{1}{2} \square ABCD$	2.	Both are standing on the same base BC and between AD $//$ BC.		
3.	$\Delta ABE + \Delta CDE = \frac{1}{2} \square ABCD$	3.	From statement (2), being remaining parts of		
4.	$\Delta CDF = \Delta ABE + \Delta CDE$	4.	From statements (1) and (3)		

OUESTION 9

In the given figure, PQRS is a parallelogram. M and N are any points on PQ and RS respectively such that PS // MN // QR. Prove that: \Box PQRS = 2(Δ PXS + Δ QXR) **Solution**

Ε

А

D

Given: PQRS is a parallelogram, PS // MN // QR.

 \Box PORS = 2(Δ PXS + Δ QXR) To prove:

Proof:

S.N.	Statements	S.N.	Reasons	
1.	\square PMNS = 2 \triangle PXS	1.	Both are standing on the same base PS and between PS// MN.	
2.	\Box MQRN = 2 Δ QXR	2.	Both are standing on the same base QR and between MN // QR.	
3.	\Box PQRS = \Box PMNS + \Box MQRN	3.	By whole part axiom	
4.	$\Box PQRS = 2(\Delta PXS + \Delta QXR)$	4.	From statements (1), (2) and (3)	
Her	Hence, proved			

Q

S

QUESTION 10

In the given figure, O is any point within the parallelogram PQRS. Prove that the sum of area of ΔPOS and ΔQOR is equal to half of the area of parallelogram PQRS. *Solution*

Given:

n: O is any point within the parallelogram PQRS

To prove: $\Delta POS + \Delta QOR = \frac{1}{2} \square PQRS$

Construction: MN // QR is drawn.

Proof:

S.N.	Statements	S.N.	Reasons
1	ADOS $\frac{1}{2}$ DOME	1	Both are standing on the same base PS and
1.	$\Delta POS = \frac{1}{2} \square PMINS$	1.	between PS// MN.
2	$AOOP = \frac{1}{2} \square MOPN$	2	Both are standing on the same base QR and
۷.	$\Delta QOK - 2$ MQKN	2.	between MN // QR.
3.	$\Delta POS + \Delta QOR = \frac{1}{2} \left(\Box PMNS + \Box MQRN \right)$	3.	Adding statements (1) and (2)
4.	$\Delta POS + \Delta QOR = \frac{1}{2} \square PQRS$	4.	From statements (1), (2) and (3) and by whole part axiom
Hene	ce, proved		X

QUESTION 11

In a pentagon PENTA; M is any point on side NT so that EN//PM//AT.

Prove that: area of triangle NPT = area of quadrilateral PEMA.

Solution

Given:In pentagon PENTA; M is any point on side NT so that EN/PM/ATTo prove:Area of $\Delta NPT =$ Area of quadrilateral PEMA.

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta PNM = \Delta PEM$	1.	Both are on the same base PM and between EN//PM.
2.	$\Delta PMT = \Delta PAM$	2.	Both are on the same base PM and between AT//PM.
3.	$\Delta PNM + \Delta PMT = \Delta PEM + \Delta PAM$	3.	Adding statements (1) and (2).
4.	$\Delta NPT = PEMA$	4.	From statement (3), by whole part axiom.

QUESTION 12

In parallelogram ABCD; P and Q are any points on BC and CD respectively such that BD//PQ. Prove that the area of triangles ABP and AQD are equal.

Solution

Given: ABCD is a parallelogram, BD//PQ.

- To prove: Area of $\triangle ABP = Area \text{ of } \triangle AQD$
- Construction: B, Q and P, D are joined.

Proof:

S.N.	Statements	S.N.	Reasons		
1.	$\Delta ABP = \Delta DBP$	1.	Both are standing on same base BP and between AD//BP.		
2.	$\Delta DBP = \Delta DBQ$	2.	Both are standing on same base BD and between PQ//BD.		
3.	$\Delta DBQ = \Delta AQD$	3.	Both are standing on same base QD and between AB//QD.		
4.	$\Delta ABP = \Delta AQD$	4. From statements (1), (2) and (3)			
Hence proved					

Vedanta Publication (P) Ltd. Vanasthali, Kathmandu, Nepal

Р

Q

Μ

S

Q

D

C

Μ

QUESTION 13

In parallelogram PQRS; diagonal PR is produced to the point T. Prove that the Δ RST and Δ RQT are equal in area.

Solution

A N	G + + + +	A 11				
Proof:						
Construction:	S and Q are joined so that the diagonals PR and SQ intersect at O.					
To prove: Area of $\triangle RST = Area \text{ of } \triangle RQT$						
Given:	In parallelogram PQRS; diagonal PR is produced to the point T.					

S.N.	Statements	S.N.	Reasons
1.	O is the mid-point of SQ.	1.	The diagonals of parallelogram bisect each other.
2.	$\Delta SOT = \Delta QOT$	2.	The median OT bisects the Δ SQT.
3.	$\Delta SOR = \Delta QOR$	3.	The median OR bisects the Δ SQR.
4.	$\Delta SOT - \Delta SOR = \Delta QOT - \Delta QOR$	4.	Subtracting statement (2) from statement (1)
5.	$\Delta RST = \Delta RQT$	5.	From statement (4)
Proved			

QUESTION 14

In the given figure, PQRS is a parallelogram. If M is any point on diagonal PR then prove that Δ PQM and Δ PSM are equal in area.

Solution

Given:	In parallelogram PQRS; M is any point on diagonal PR.
--------	---

To prove: Area of $\triangle QMR = Area \text{ of } \triangle SMR$

Construction: S and Q are joined so that the diagonals PR and SQ intersect at O.

Proof:

S.N.	Statements	S.N.	Reasons
1.	O is the mid-point of QS.	1.	The diagonals of parallelogram bisect each other.
2.	$\Delta QOM = \Delta SOM$	2.	The median OM bisects the Δ SQM.
3.	$\Delta QOR = \Delta SOR$	3.	The median OR bisects the Δ SQR.
4.	$\Delta QOM + \Delta QOR = \Delta SQM + \Delta SOR$	4.	Adding statements (2) and (3)
5.	$\Delta QMR = \Delta SMR$	5.	From statement (4)
Proved			

QUESTION 15

In parallelogram ABCD; M is any point on side AD. CM is produced to E such that CM = ME. Prove that: area of triangle BEM = area of triangle ADC.

Solution

Given: In parallelogram ABCD; M is any point on side AD, CM is produced to E such that CM = ME.

To prove: Area of $\triangle BEM = Area \text{ of } \triangle ADC$

Proof:

	S.N.	Statements	S.N.	Reasons	
\mathcal{N}	1.	$\Delta BEM = \Delta BMC$	1.	The median BM bisects the $\triangle BEC$.	
	2.	$\Delta BMC = \frac{1}{2} \square ABCD$	2.	Both are standing on same base BC and between AD//BC.	
	3.	$\Delta ADC = \frac{1}{2} \square ABCD$	3.	The diagonal AC bisects the parallelogram ABCD.	
	4.	$\Delta BEM = \Delta ADC$	4.	From statements (1), (2) and (3)	
	Proved	l			

Vedanta Publication (P) Ltd. Vanasthali, Kathmandu, Nepal

वेदान्त पब्लिकेसन्स् (प्रा.) लि. वनस्थली, काठमाडौँ, नेपाल

QUESTION 16

In $\triangle ABC$; medians BE and CD intersect at O. Prove that $\triangle BOC$ and quadrilateral ADOE are equal in area.

Solution

Given:	In $\triangle ABC$; medians BE and CD intersect at O.
To prove:	Area of $\triangle BOC =$ Area of quadrilateral ADOE
Proof:	

S.N.	Statements	S.N.	Reasons	
1.	$\Delta BCD = \frac{1}{2} \Delta ABC$	1.	The median CD bisect $\triangle ABC$.	
2.	$\Delta ABE = \frac{1}{2} \Delta ABC$	2.	The median BE bisect $\triangle ABC$.	
3.	$\Delta BCD = \Delta ABE$	3.	From statements (2) and (3).	
4.	$\Delta BCD = \Delta BOC + \Delta BOD$ $\Delta ABE = Quad. ADOE + \Delta BOD$	4.	By whole part axiom	
5.	$\Delta BOC + \Delta BOD = Quad. ADOE + \Delta BOD$ $\therefore Quad. ADOE = \Delta BOC$	5.	From (3) and (4)	
Proved				

QUESTION 17

In the given figure, PQRS is the trapezium where PQ // MN // SR. Prove that: Δ PNS = Δ QMR. *Solution*

в

D

Given: PQRS is the trapezium where PQ // MN // SR

To prove: $\Delta PNS = \Delta QMR$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta PMN = \Delta QMN$	1.	Both are standing on same base MN and between PQ//MN.
2.	$\Delta MNS = \Delta MNR$	2.	Both are standing on same base MN and between MN//SR.
3.	$\Delta PMN + \Delta MNS = \Delta QMN + \Delta MNR$	3.	Adding (1) and (2)
4.	$\Delta PNS = \Delta QMR$	4.	By whole part axiom
Proved			

QUESTION 18

In the figure, AB // CD // EF. Prove that: $\triangle AED = \triangle BFC$ Solution Given: AB // CD // EF To prove: $\triangle AED = \triangle BFC$

 $\frac{10 \text{ prove. } \Delta \Omega D}{D} = \Delta$

Proof	t:

$\langle \cdot \rangle$	S.N.	Statements	S.N.	Reasons
	1.	$\Delta AEF = \Delta BEF$	1.	Both are standing on same base EF and between AB//EF.
	2.	$\Delta DEF = \Delta CEF$	2.	Both are standing on same base EF and between CD//EF.
	3.	$\Delta AEF + \Delta DEF = \Delta BEF + \Delta CEF$	3.	Adding (1) and (2)
	4.	$\Delta AED = \Delta BFC$	4.	By whole part axiom
	Proved	1		

Vedanta Publication (P) Ltd. Vanasthali, Kathmandu, Nepal

Е

QUESTION 19

In the figure, EF // BD // GH. Prove that:

Area of quadrilateral BHDE = Area of quadrilateral BGDF **Solution**

Given: EF // BD // GH

To prove: Area of quadrilateral BHDE = Area of quadrilateral BGDF Proof:

S.N.	Statements	S.N.	Reasons				
1.	$\Delta EBD = \Delta FBD$	1.	Both are standing on same base BD and between EF//BD.				
2.	$\Delta HBD = \Delta GBD$	2.	Both are standing on same base BD and between GH//BD.				
3.	$\Delta EBD + \Delta HBD = \Delta FBD + \Delta GBD$	3.	Adding (1) and (2)				
4.	Quad. HBDE = Quad. BGDF	4.	By whole part axiom				
Prove	1						

А

QUESTION 20

In the adjoining figure, it is given that AD//BC and BD//CE. Prove that: $\triangle ABC = \triangle BDE$. **Solution**

Given: AD//BC and BD//CE

To prove: Area of $\triangle ABC = Area \text{ of } \triangle BDE$

Construction: D and C are joined.

Proof:

S.N.	Statements	S.N.	Reasons				
1.	$\Delta ABC = \Delta DBC$	1.	Both are standing on same base BC and between AD//BC.				
2.	$\Delta DBC = \Delta DBE$	2.	Both are standing on same base BD and between CE//BD.				
3.	$\Delta ABC = \Delta BDE$	3.	From statements (1) and (2)				
Proveo	1						

QUESTION 21

In parallelogram ABCD; E is the mid-point of side CD and F is the mid-point of AE. Prove that area of parallelogram ABCD = $8 \times \text{area of } \Delta \text{AFD}$.

Solution

To prove: Area of parallelogram ABCD = $8 \times$ Area of \triangle AFD.

Construction: A and C are joined.

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta AFD = \frac{1}{2} \Delta AED$	1.	The median FD bisects the $\triangle AED$.
2.	2. $\Delta AED = \frac{1}{2} \Delta ACD$		The median AE bisects the \triangle ACD.
3.	$\Delta ACD = \frac{1}{2} \square ABCD$	3.	The diagonal AC bisects the parallelogram ABCD.
4.	$\Delta AFD = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \square ABCD$	4.	From statements (1), (2) and (3).
5.	\square ABCD = 8 \triangle AFD	5.	From statement (4)
Prove	1		

D

Е

В

R

QUESTION 22

In quadrilateral ABCD; AB//CD and BC//AD. P is any point on the side AD and BP is produced to meet CD produced at Q. Prove that the area of triangles APQ and PDC are equal. *Solution*

Given: In quadrilateral ABCD; AB//CD and BC//AD. P is any point on the side AD.

To prove: Area of $\triangle APQ = Area$ of $\triangle PDC$

Proof:

S.N.	Statements	S.N.	Reasons			
1.	$\Delta PBC = \frac{1}{2} \square ABCD$	1.	Both are standing on same base BC and between AD//BC.			
2.	$\Delta PAB + \Delta PDC = \frac{1}{2} \square ABCD$	2.	Remaining parts of parallelogram ABCD.			
3.	$\Delta ABQ = \frac{1}{2} \square ABCD$	3.	Both are standing on same base AB and between AB//QC.			
4.	$\Delta PAB + \Delta PDC = \Delta ABQ$	4.	From statements (2) and (3)			
5.	$\Delta PAB + \Delta PDC = \Delta APQ + \Delta PAB$ $\therefore \Delta PDC = \Delta APQ$	5.	$\Delta ABQ = \Delta APQ + \Delta PAB$			
Proved	1					

QUESTION 23

In a quadrilateral ABCD, side BC is extended to point E in such a way that AC // DE. Prove that: area of $\triangle ABE$ = area of quad. ABCD Solution A C C

Q

Given: AC // DE

To prove: area of $\triangle ABE$ = area of quad. ABCD

Proof:

11001.			
S.N.	Statements	S.N.	Reasons
1.	$\Delta DAC = \Delta EAC$	1.	Both are standing on AC and between DE//AC.
2.	$\Delta DAC + \Delta ABC = \Delta EAC + \Delta ABC$	2.	Adding $\triangle ABC$ on both sides of statement (1)
3.	$\Delta ABE = Quad. ABCD$	3.	By whole part axiom
Proved			

QUESTION 24

In the figure, M is any point of side DC of \square ABCD and AM is produced to E such that AM = ME. Prove that the area of \triangle ABE = area of parallelogram ABCD.

Given: M is any point of side DC of \square ABCD and AM = ME.

To prove: area of $\triangle ABE = area of \square ABCD$

Pro	oof:	
Pro	oof:	

S.N.	Statements	S.N.	Reasons
1.	$\Delta MAB = \frac{1}{2} \square ABCD$	1.	Both are standing on AB and between DC//AB.
2.	$\Delta MAB = \frac{1}{2} \Delta ABE$	2.	Median MB bisects ∆ABE
3.	$\Delta ABE = \Box ABCD$	3.	From statements (1) and (2)

QUESTION 25

In the given figure, side BC of parallelogram ABCD is extended to a point M such that BC = CE. Write with reason that $\triangle BEF$ and parallelogram ABCD are equal in area.

Solution

Given: BC of parallelogram ABCD is extended to a point M such that BC = CE.

To prove: area of $\triangle ABE = area of \square ABCD$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta BEF = \Box ABCD$	1.	The base of triangle is twice the base of parallelogram and they are lying between AD//BE.
Proved			

QUESTION 26

ABCD is a parallelogram; M is the mid-point of the side EC of triangle BEC. Prove that: Area of $\triangle EBM = Area \text{ of } \triangle ADC$.

Solution

Given: ABCD is a parallelogram; EM = MC

To prove: Area of $\triangle EBM = Area \text{ of } \triangle ADC$

Proof:

S.N.	Statements	S.N.	Reasons	
1.	$\Delta EBM = \Delta CBM$	1.	Median BM bisects $\triangle BEC$	
2.	$\Delta CBM = \frac{1}{2} \square ABCD$	2.	Both are standing on BC and between AD//BC.	
3.	$\Delta ADC = \frac{1}{2} \square ABCD$	3.	Diagonal AC bisects ABCD.	
4.	$\Delta EBM = \Delta ADC$	4.	From statements (1), (2) and (3).	
Proved				

QUESTION 27

M is the mid-point of the side QR of ΔPQR . If PX//RY and PR//XY, prove that $\Delta XYR = \frac{1}{2} \Delta PQR$.

Solution

Given: QM = MR, PX//RY and PR//XY

To prove:
$$\Delta XYR = \frac{1}{2} \Delta PQR$$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta XYR = \frac{1}{2} \square PXYR$	1.	Diagonal XR bisects parallelogram PXYR.
2.	$\Delta PMR = \frac{1}{2} \square PXYR$	2.	Both are standing on PR and between XY//PR.
3.	$\Delta PMR = \frac{1}{2} \Delta PQR$	3.	Median PM bisects △PQR
4.	$\Delta XYR = \frac{1}{2} \Delta PQR$	4.	From statements (1), (2) and (3).

वेदान्त पब्लिकेसन्स् (प्रा.) लि. वनस्थली, काठमाडौँ, नेपाल

QUESTION 28

In the given figure; TONE is a parallelogram and E is the mid-point of side OW of triangle TWO. Prove that: $\Delta TWO = 2\Delta ONE$.

Solution

Given: TONE is a parallelogram and OE = EW

To prove: $\Delta TWO = 2\Delta ONE$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta TWO = 2\Delta TOE$	1.	Median TE bisects Δ TWO
2.	$\Delta TOE = \Delta ONE$	2.	Diagonal OE bisects []TONE.
3.	$\Delta TWO = 2\Delta ONE$	3.	From statements (1) and (2).
Proved	1		

QUESTION 29

In the given $\triangle ABC$; D, E and F are the mid-points of BC, AD and BE respectively where BE // DG. Prove: $\triangle ABC = 8\triangle EFG$

Solution

Given: In $\triangle ABC$; D, E and F are the mid-points of BC, AD and BE respectively, BE // DG

To prove: $\triangle ABC = 8\triangle EFG$

Construction: Join F and D

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta ABC = 2\Delta ABD$	1.	Median AD bisects $\triangle ABC$.
2.	$\Delta ABD = 2\Delta BED$	2.	Median BE bisects ΔABD.
3.	$\Delta BED = 2\Delta DEF$	3.	Median FD bisects ΔBED .
4.	$\Delta DEF = \Delta EFG$	4.	Both are standing on FE and between DG // FE
5.	$\Delta ABC = 2 \times 2 \times 2 \times \Delta EFG = 8\Delta EFG$	5.	From statements (1), (2), (3) and (4)
Proved	\sim		

QUESTION 30

In \triangle ABC; D is the mid-point of side AB. If P is any point on BC and Q is any point on AD such that CQ//PD, prove that the area of \triangle BPQ is half of the area of \triangle ABC.

Solution

Given: In $\triangle ABC$; D is the mid-point of side AB, CQ//PD. D

To prove: Area of $\triangle BPQ = \frac{1}{2}$ Area of $\triangle ABC$

Construction: D and C are joined.

Proof:

	S.N.	Statements	S.N.	Reasons
\mathcal{N}	1.	$\Delta QDP = \Delta CDP$	1.	Both are standing on DP and between QC//DP.
	2.	$\Delta QDP + \Delta BPD = \Delta CDP + \Delta BPD$	2.	Adding \triangle BPD on both sides of statement (1)
	3.	$\Delta BPQ = \Delta BDC$	3.	By whole part axiom
	4.	$\Delta BDC = \frac{1}{2} \Delta ABC$	4.	The median DC bisects the $\triangle ABC$.
	5.	$\Delta BPQ = \frac{1}{2} \Delta ABC$	5.	From statements (3) and (4).

Vedanta Publication (P) Ltd. Vanasthali, Kathmandu, Nepal

वेदान्त पब्लिकेसन्स् (प्रा.) लि. वनस्थली, काठमाडौँ, नेपाल

в

D

QUESTION 31

In hexagon ABCDEF; AB // FC // ED and AF // BE // CD. If the diagonals BE and CF intersect at O such that parallelograms ABOF and OCDE are equal in area, prove that BC // FE. E_{-----D}

Solution

Given:AB//FC//ED and AF//BE//CD, diagonals BE and CF intersect at O.To prove:BC//FE

Construction: B, F and C, E are joined.

Proof:

S.N.	Statements	S.N.	Reasons
1.	\square ABOF = \square OCDE	1.	Given
2.	$\Delta BOF = \frac{1}{2} \square ABOF$	2.	The diagonals bisect the parallelogram
3.	$\Delta \text{COE} = \frac{1}{2} \square \text{OCDE}$	3.	The diagonals bisect the parallelogram
4.	$\Delta BOF = \Delta COE$	4.	From statements (1) and (2)
5.	$\Delta FBC = \Delta EBC$	5.	Adding $\triangle BOC$ in statement (3)
6.	BC//FE	6.	From statement (4), Δ^{s} on the same base BC have equal areas.
Proved	l		

QUESTION 32

In the parallelogram ABCD given alongside, M is the mid-point of CD. Prove that: area of parallelogram ABCD and trapezium ABFE are equal in area.

Solution

Given: ABCD is a parallelogram; M is the mid-point of CD

To prove: Area of \square ABCD = Area of trapezium ABFE Proof:

S.N.	Statements	S.N.	Reasons
1.	In Δ MED and Δ MCF	1.	
	(i) $\angle MED = \angle CFM$ (A)		(i) ED // CF, alternate angles
	(ii) \angle EDM = \angle MCF (A)		(ii) ED // CF, alternate angles
	(iii) $DM = CM(S)$		(iii) Given
2.	$\Delta MED \cong \Delta MCF$	2.	By A.A.S. axiom
3.	$\Delta MED = \Delta MCF$	3.	The areas of congruent triangles are equal.
4.	$\Delta MED + Pent. ABCME = \Delta MCF + Pent. ABCME$	4.	Adding Pentagon ABCME in (3)
5.	□ ABCD = Trapezium ABFE	5.	By whole part axiom
Proved			

QUESTION 33

In the trapezium ABCD, AB // DC and P is the midpoint of BC.

Prove that $\triangle APD = \frac{1}{2}$ trap. ABCD

Solution

Given: In the trapezium ABCD, AB // DC and P is the midpoint of BC

To prove: $\triangle APD = \frac{1}{2}$ trap. ABCD

Construction: Produce DP and AB to meet at Q. Proof:

А

D

С

Р

В

А

С

Р

R

Q

Vedanta Publication (P) Ltd. Vanasthali, Kathmandu, Nepal

1. 2. 3. 4. 5. 6. 7. 8. 9.	 (i) DC // AQ, alternate angles (ii) DC // AQ, alternate angles (iii) Given By A.A.S. axiom The areas of congruent triangles are equal. By whole part axiom From statements (3) and (4) Median AP bisects ΔDAQ From statements (5) and (6) By whole part axiom From statements (7) and (8)
2. 3. 4. 5. 6. 7. 8. 9.	 (i) DC // AQ, alternate angles (ii) DC // AQ, alternate angles (iii) Given By A.A.S. axiom The areas of congruent triangles are equal. By whole part axiom From statements (3) and (4) Median AP bisects ΔDAQ From statements (5) and (6) By whole part axiom From statements (7) and (8)
2. 3. 4. 5. 6. 7. 8. 9.	 (ii) DC // AQ, alternate angles (iii) Given By A.A.S. axiom The areas of congruent triangles are equal. By whole part axiom From statements (3) and (4) Median AP bisects ΔDAQ From statements (5) and (6) By whole part axiom From statements (7) and (8)
2. 3. 4. 5. 6. 7. 8. 9.	 (iii) Given By A.A.S. axiom The areas of congruent triangles are equal. By whole part axiom From statements (3) and (4) Median AP bisects ΔDAQ From statements (5) and (6) By whole part axiom From statements (7) and (8)
2. 3. 4. 5. 6. 7. 8. 9.	By A.A.S. axiom The areas of congruent triangles are equal. By whole part axiom From statements (3) and (4) Median AP bisects ΔDAQ From statements (5) and (6) By whole part axiom From statements (7) and (8)
3. 4. 5. 6. 7. 8. 9.	The areas of congruent triangles are equal. By whole part axiom From statements (3) and (4) Median AP bisects ΔDAQ From statements (5) and (6) By whole part axiom From statements (7) and (8)
4. 5. 6. 7. 8. 9.	By whole part axiom From statements (3) and (4) Median AP bisects ΔDAQ From statements (5) and (6) By whole part axiom From statements (7) and (8)
5. 6. 7. 8. 9.	From statements (3) and (4) Median AP bisects ΔDAQ From statements (5) and (6) By whole part axiom From statements (7) and (8)
6. 7. 8. 9.	Median AP bisects ΔDAQ From statements (5) and (6) By whole part axiom From statements (7) and (8)
7. 8. 9.	From statements (5) and (6) By whole part axiom From statements (7) and (8)
8.9.	By whole part axiom From statements (7) and (8)
9.	From statements (7) and (8)
	CCCC C
	CCCC.
a T	पबिल