Important Higher Ability Questions (Geometry: Area of triangles and quadrilaterals)

 QUESTION 1In the given figure, $\mathrm{AB} / / \mathrm{DC}, \mathrm{AH} / / \mathrm{BC}, \mathrm{BE} / / \mathrm{CF}$ and $\mathrm{EF} / / \mathrm{BG}$.
Prove that: $\square \mathrm{ABCD}=\square \mathrm{GBEF}$.
Solution
Given: $\quad \mathrm{AB} / / \mathrm{DC}, \mathrm{AH} / / \mathrm{BC}, \mathrm{BE} / / \mathrm{CF}$ and $\mathrm{EF} / / \mathrm{BG}$.
To prove: $\quad \square \mathrm{ABCD}=\square \mathrm{GBEF}$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\square \mathrm{ABCD}=\square \mathrm{EBCH}$	1.	Both are standing on the same base BC and between $\mathrm{AH} / / \mathrm{BC}$.
2.	$\square \mathrm{EBCH}=\square \mathrm{GBEF}$	2.	Both are standing on the same base EB and between $\mathrm{EB} / / \mathrm{FC}$.
3.	$\square \mathrm{ABCD}=\square \mathrm{GBEF}$	3.	From statements (1) and (2).
Hence, proved			

QUESTION 2

In the given figure, $\mathrm{AB} / / \mathrm{DC} / / \mathrm{EF}, \mathrm{AD} / / \mathrm{BE}$ and $\mathrm{AF} / / \mathrm{DE}$.
Prove that $\square \mathrm{DEFH}=\square \mathrm{ABCD}$.
Solution
Given: $\quad \mathrm{AB} / / \mathrm{DC} / / \mathrm{EF}, \mathrm{AD} / / \mathrm{BE}$ and $\mathrm{AF} / / \mathrm{DE}$.
To prove: $\quad \square \mathrm{DEFH}=\square \mathrm{ABCD}$
Proof:

S.N.	Statements	S.N.	Reasons	
1.	$\square \mathrm{DEFH}=\square \mathrm{DEGA}$	1.	Both are standing on the same base DE and between AF // DE.	
2.	$\square \mathrm{DEGA}=\square \mathrm{ABCD}$	2.	Both are standing on the same base AD and between $\mathrm{BE} / / \mathrm{AD}$.	
3.	$\square \mathrm{DEFH}=\square \mathrm{ABCD}$	3.	From statements (1) and (2).	
Hence, proved				

QUESTION 3

In the given figure, $\mathrm{AE} / / \mathrm{BC}, \mathrm{BF} / / \mathrm{CE}, \mathrm{CG} / / \mathrm{EF}$ and $\mathrm{AB} \perp \mathrm{BC}$.
Prove that rectangle $\mathrm{ABCD}=\square \mathrm{EFGC}$.

Solution

Given: $\quad \mathrm{AE} / / \mathrm{BC}, \mathrm{BF} / / \mathrm{CE}, \mathrm{CG} / / \mathrm{EF}$ and $\mathrm{AB} \perp \mathrm{BC}$.
To prove: Rectangle $\mathrm{ABCD}=\square \mathrm{EFGC}$.
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\square \mathrm{ABCD}=\square \mathrm{HBCE}$	1.	Both are standing on the same base BC and between AE // BC.
2.	$\square \mathrm{HBCE}=\square \mathrm{EFGC}$	2.	Both are standing on the same base CE and between BF // CE.
3.	$\square \mathrm{ABCD}=\square \mathrm{EFGC}$	3.	From statements (1) and (2).
Hence, proved			

QUESTION 4

In the given figure, $\mathrm{AB} / / \mathrm{DC}, \mathrm{BF} / / \mathrm{CE}$ and $\mathrm{FE} / / \mathrm{AG} / / \mathrm{BC}$.
Prove that: $\square \mathrm{BCEF}=\square \mathrm{ABCD}+\square \mathrm{ADEF}$
Solution
Given: $\quad \mathrm{AB} / / \mathrm{DC}, \mathrm{BF} / / \mathrm{CE}$ and $\mathrm{FE} / / \mathrm{AG} / / \mathrm{BC}$
To prove: $\square \mathrm{BCEF}=\square \mathrm{ABCD}+\square \mathrm{ADEF}$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\square \mathrm{ABCD}=\square \mathrm{HBCG}$	1.	Both are standing on the same base BC and between AG // BC.
2.	$\square \mathrm{FADE}=\square \mathrm{FHGE}$	2.	Both are standing on the same base FE and between AG // FE.
3.	$\square \mathrm{BCEF}=\square \mathrm{HBCG}+\square \mathrm{FHGE}$	3.	By whole part axiom
4.	$\square \mathrm{BCEF}=\square \mathrm{ABCD}+\square \mathrm{ADEF}$	4.	From statements (1), (2) and (3).
Hence, proved			

QUESTION 5

In the given figure, prove that the area of parallelograms ABCD and PQRD are equal.
Solution
Given: $\quad \mathrm{ABCD}$ and PQRD are parallelograms.
To prove: $\quad \square \mathrm{ABCD}=\square \mathrm{PQRD}$
Construction: P and C are joined.
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{PDC}=\frac{1}{2} \square \mathrm{ABCD}$	1.	Both are standing on the same base DC and between $\mathrm{AB} / / \mathrm{DC}$.
2.	$\Delta \mathrm{PDC}=\frac{1}{2} \square \mathrm{PQRD}$	2.	Both are standing on the same base PD and between QR // PD.
3.	$\square \mathrm{ABCD}=\square \mathrm{PQRD}$	3.	From statements (1) and (2).
Hence, proved			

QUESTION 6

In the given figure, $\mathrm{AB} / / \mathrm{DC}, \mathrm{BC} / / \mathrm{ED}$ and $\mathrm{EB} / / \mathrm{AC}$. Prove that: Ar. $(\triangle \mathrm{AEB})=\mathrm{Ar} .(\triangle \mathrm{ACD})$. Solution
Given:
$\mathrm{AB} / / \mathrm{DC}, \mathrm{BC} / / \mathrm{ED}$ and $\mathrm{EB} / / \mathrm{AC}$
To prove:
$\operatorname{Ar} .(\triangle \mathrm{AEB})=\mathrm{Ar} .(\triangle \mathrm{ACD})$.

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{AEB}=\frac{1}{2} \square \mathrm{EBCG}$	1.	Both are standing on the same base EB and between $\mathrm{AC} / / \mathrm{EB}$.
2.	$\Delta \mathrm{ACD}=\frac{1}{2} \square \mathrm{FBCD}$	2.	Both are standing on the same base CD and between BA // CD.
3.	$\square \mathrm{EBCG}=\square \mathrm{FBCD}$	3.	Both are standing on the same base BC and between $\mathrm{ED} / / \mathrm{BC}$.
4.	$\Delta \mathrm{AEB}=\triangle \mathrm{ACD}$	4.	From statements (1), (2) and (3)
Hence, proved			

QUESTION 7

In the given figure, $\mathrm{QR} / / \mathrm{TS}, \mathrm{QT} / / \mathrm{RP}$ and $\mathrm{RS} / / \mathrm{QP}$. Prove that: Ar. $\Delta \mathrm{PQT}=\mathrm{Ar} . \Delta \mathrm{PRS}$.

Solution

Given:
QR // TS, QT // RP and RS // QP
To prove: \quad Area of $\triangle \mathrm{PQT}=$ Area of $\triangle \mathrm{PRS}$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{PQT}=\frac{1}{2} \square \mathrm{RQTV}$	1.	Both are standing on the same base QT and between RP // QT.
2.	$\Delta \mathrm{PRS}=\frac{1}{2} \square \mathrm{RQUS}$	2.	Both are standing on the same base RS and between PQ // SR.
3.	$\square \mathrm{RQTV}=\square \mathrm{RQUS}$	3.	Both are standing on the same base QR and between TS // QR.
4.	$\Delta \mathrm{PQT}=\Delta \mathrm{PRS}$	4.	From statements (1), (2) and (3
Hence, proved			

QUESTION 8

In the given figure, $A B C D$ is a parallelogram. E and F are any points on $A D$ and $A B$ respectively. Prove that: $\triangle \mathrm{CDF}=\triangle \mathrm{ABE}+\Delta \mathrm{CDE}$
Solution
Given:
$A B C D$ is a parallelogram. E and F are any points on $A D$ and $A B$ respectively.

To prove: $\quad \Delta \mathrm{CDF}=\Delta \mathrm{ABE}+\Delta \mathrm{CDE}$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{CDF}=\frac{1}{2} \square \mathrm{ABCD}$	1.	Both are standing on the same base CD and between $\mathrm{AB} / / \mathrm{CD}$.
2.	$\Delta \mathrm{EBC}=\frac{1}{2} \square \mathrm{ABCD}$	2.	Both are standing on the same base BC and between $\mathrm{AD} / / \mathrm{BC}$.
3.	$\Delta \mathrm{ABE}+\Delta \mathrm{CDE}=\frac{1}{2} \square \mathrm{ABCD}$	3.	From statement (2), being remaining parts of $\square \mathrm{ABCD}$
4.	$\Delta \mathrm{CDF}=\Delta \mathrm{ABE}+\Delta \mathrm{CDE}$	4.	From statements (1) and (3)

QUESTION 9

In the given figure, PQRS is a parallelogram. M and N are any points on $P Q$ and $R S$ respectively such that $\mathrm{PS} / / \mathrm{MN} / / \mathrm{QR}$. Prove that: $\square \mathrm{PQRS}=2(\triangle \mathrm{PXS}+\triangle \mathrm{QXR})$ Solution
Given:
PQRS is a parallelogram, $\mathrm{PS} / / \mathrm{MN} / / \mathrm{QR}$.

To prove: $\quad \square \mathrm{PQRS}=2(\Delta \mathrm{PXS}+\Delta \mathrm{QXR})$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\square \mathrm{PMNS}=2 \Delta \mathrm{PXS}$	1.	Both are standing on the same base PS and between PS// MN.
2.	$\square \mathrm{MQRN}=2 \Delta \mathrm{QXR}$	2.	Both are standing on the same base QR and between MN // QR.
3.	$\square \mathrm{PQRS}=\square \mathrm{PMNS}+\square \mathrm{MQRN}$	3.	By whole part axiom
4.	$\square \mathrm{PQRS}=2(\triangle \mathrm{PXS}+\triangle \mathrm{QXR})$	4.	From statements (1), (2) and (3)
Hence, proved			

QUESTION 10

In the given figure, O is any point within the parallelogram $P Q R S$. Prove that the sum of area of $\triangle \mathrm{POS}$ and $\triangle \mathrm{QOR}$ is equal to half of the area of parallelogram PQRS.
Solution
Given:
O is any point within the parallelogram PQRS
To prove: $\quad \Delta \mathrm{POS}+\Delta \mathrm{QOR}=\frac{1}{2} \square \mathrm{PQRS}$
Construction: $\mathrm{MN} / / \mathrm{QR}$ is drawn.
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{POS}=\frac{1}{2} \square \mathrm{PMNS}$	1.	Both are standing on the same base PS and between PS// MN.
2.	$\Delta \mathrm{QOR}=\frac{1}{2} \square \mathrm{MQRN}$	2.	Both are standing on the same base QR and between MN // QR.
3.	$\Delta \mathrm{POS}+\Delta \mathrm{QOR}=\frac{1}{2}(\square \mathrm{PMNS}+\square \mathrm{MQRN})$	3.	Adding statements (1) and (2)
4.	$\Delta \mathrm{POS}+\Delta \mathrm{QOR}=\frac{1}{2} \square \mathrm{PQRS}$	4.	From statements (1), (2) and (3) and by whole part axiom

QUESTION 11

In a pentagon PENTA; M is any point on side NT so that $\mathrm{EN} / \mathrm{PM} / / \mathrm{AT}$.
Prove that: area of triangle NPT $=$ area of quadrilateral PEMA.
Solution
Given:
In pentagon PENTA; M is any point on side NT so that EN//PM//AT

To prove: \quad Area of $\triangle \mathrm{NPT}=$ Area of quadrilateral PEMA.
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{PNM}=\Delta \mathrm{PEM}$	1.	Both are on the same base PM and between EN//PM.
2.	$\Delta \mathrm{PMT}=\Delta \mathrm{PAM}$	2.	Both are on the same base PM and between AT//PM.
3.	$\Delta \mathrm{PNM}+\Delta \mathrm{PMT}=\Delta \mathrm{PEM}+\Delta \mathrm{PAM}$	3.	Adding statements (1) and (2).
4.	$\Delta \mathrm{NPT}=$ PEMA	4.	From statement (3), by whole part axiom.

QUESTION 12

In parallelogram $\mathrm{ABCD} ; \mathrm{P}$ and Q are any points on BC and CD respectively such that $\mathrm{BD} / / \mathrm{PQ}$. Prove that the area of triangles ABP and AQD are equal. Solution
Given:
ABCD is a parallelogram, $\mathrm{BD} / / \mathrm{PQ}$.
To prove: \quad Area of $\triangle \mathrm{ABP}=$ Area of $\triangle \mathrm{AQD}$
Construction: B, Q and P, D are joined.

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{ABP}=\Delta \mathrm{DBP}$	1.	Both are standing on same base BP and between $\mathrm{AD} / / \mathrm{BP}$.
2.	$\Delta \mathrm{DBP}=\Delta \mathrm{DBQ}$	2.	Both are standing on same base BD and between $\mathrm{PQ} / / \mathrm{BD}$.
3.	$\Delta \mathrm{DBQ}=\Delta \mathrm{AQD}$	3.	Both are standing on same base QD and between $\mathrm{AB} / / \mathrm{QD}$.
4.	$\Delta \mathrm{ABP}=\triangle \mathrm{AQD}$	4.	From statements (1), (2) and (3)
Hence, proved			

QUESTION 13

In parallelogram PQRS; diagonal PR is produced to the point T. Prove that the $\triangle \mathrm{RST}$ and $\triangle \mathrm{RQT}$ are equal in area.

Solution

Given: In parallelogram PQRS; diagonal PR is produced to the point T.
To prove: \quad Area of $\triangle R S T=$ Area of $\triangle R Q T$
Construction: $\quad \mathrm{S}$ and Q are joined so that the diagonals PR and SQ intersect at O .
Proof:

S.N.	Statements	S.N.	Reasons
1.	O is the mid-point of SQ.	1.	The diagonals of parallelogram bisect each other.
2.	$\Delta \mathrm{SOT}=\Delta \mathrm{QOT}$	2.	The median OT bisects the $\Delta \mathrm{SQT}$.
3.	$\Delta \mathrm{SOR}=\Delta \mathrm{QOR}$	3.	The median OR bisects the $\Delta \mathrm{SQR}$.
4.	$\Delta \mathrm{SOT}-\Delta \mathrm{SOR}=\Delta \mathrm{QOT}-\Delta \mathrm{QOR}$	4.	Subtracting statement (2) from statement (1)
5.	$\Delta \mathrm{RST}=\Delta \mathrm{RQT}$	5.	From statement (4)

QUESTION 14

In the given figure, PQRS is a parallelogram. If M is any point on diagonal PR then prove that $\triangle \mathrm{PQM}$ and $\triangle \mathrm{PSM}$ are equal in area.

Solution

Given:
In parallelogram $\mathrm{PQRS} ; \mathrm{M}$ is any point on diagonal PR .

To prove: \quad Area of $\triangle \mathrm{QMR}=$ Area of $\triangle \mathrm{SMR}$
Construction: $\quad \mathrm{S}$ and Q are joined so that the diagonals PR and SQ intersect at O .
Proof:

S.N.	Statements	S.N.	Reasons
1.	O is the mid-point of QS.	1.	The diagonals of parallelogram bisect each other.
2.	$\Delta \mathrm{QOM}=\Delta \mathrm{SOM}$	2.	The median OM bisects the Δ SQM.
3.	$\Delta \mathrm{QOR}=\Delta \mathrm{SOR}$	3.	The median OR bisects the Δ SQR.
4.	$\Delta \mathrm{QOM}+\Delta \mathrm{QOR}=\Delta \mathrm{SQM}+\Delta \mathrm{SOR}$	4.	Adding statements (2) and (3)
5.	$\Delta \mathrm{QMR}=\Delta \mathrm{SMR}$	5.	From statement (4)
Proved			

QUESTION 15

In parallelogram $\mathrm{ABCD} ; \mathrm{M}$ is any point on side AD . CM is produced to E such that $\mathrm{CM}=\mathrm{ME}$. Prove that: area of triangle $\mathrm{BEM}=$ area of triangle ADC .
Solution
Given: In parallelogram $A B C D ; M$ is any point on side
$\mathrm{AD} . \mathrm{CM}$ is produced to E such that $\mathrm{CM}=\mathrm{ME}$.
To prove: Area of $\triangle \mathrm{BEM}=$ Area of $\triangle \mathrm{ADC}$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{BEM}=\Delta \mathrm{BMC}$	1.	The median BM bisects the $\triangle \mathrm{BEC}$.
2.	$\Delta \mathrm{BMC}=\frac{1}{2} \square \mathrm{ABCD}$	2.	Both are standing on same base BC and between $\mathrm{AD} / / \mathrm{BC}$.
3.	$\Delta \mathrm{ADC}=\frac{1}{2} \square \mathrm{ABCD}$	3.	The diagonal AC bisects the parallelogram ABCD.
4.	$\Delta \mathrm{BEM}=\triangle \mathrm{ADC}$	4.	From statements (1), (2) and (3)
Proved			

QUESTION 16

In $\triangle \mathrm{ABC}$; medians BE and CD intersect at O . Prove that $\triangle \mathrm{BOC}$ and quadrilateral ADOE are equal in area.

Solution

Given:
In $\triangle \mathrm{ABC}$; medians BE and CD intersect at O .
To prove: \quad Area of $\triangle \mathrm{BOC}=$ Area of quadrilateral ADOE

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{BCD}=\frac{1}{2} \Delta \mathrm{ABC}$	1.	The median CD bisect $\triangle \mathrm{ABC}$.
2.	$\triangle \mathrm{ABE}=\frac{1}{2} \triangle \mathrm{ABC}$	2.	The median BE bisect $\triangle \mathrm{ABC}$.
3.	$\triangle \mathrm{BCD}=\triangle \mathrm{ABE}$	3.	From statements (2) and (3).
4.	$\begin{aligned} & \triangle \mathrm{BCD}=\triangle \mathrm{BOC}+\triangle \mathrm{BOD} \\ & \triangle \mathrm{ABE}=\mathrm{Quad} . \mathrm{ADOE}+\triangle \mathrm{BOD} \end{aligned}$	4.	By whole part axiom
5.	$\begin{aligned} & \triangle \mathrm{BOC}+\triangle \mathrm{BOD}=\text { Quad. } \mathrm{ADOE}+\triangle \mathrm{BOD} \\ & \therefore \text { Quad. } \mathrm{ADOE}=\triangle \mathrm{BOC} \end{aligned}$	5.	From (3) and (4)
Proved			

QUESTION 17

In the given figure, PQRS is the trapezium where $\mathrm{PQ} / / \mathrm{MN} / / \mathrm{SR}$. Prove that: $\triangle \mathrm{PNS}=\Delta \mathrm{QMR}$. Solution
Given: PQRS is the trapezium where $\mathrm{PQ} / / \mathrm{MN} / / \mathrm{SR}$
To prove: $\triangle \mathrm{PNS}=\Delta \mathrm{QMR}$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{PMN}=\Delta \mathrm{QMN}$	1.	Both are standing on same base MN and between $\mathrm{PQ} / / \mathrm{MN}$.
2.	$\Delta \mathrm{MNS}=\triangle \mathrm{MNR}$	2.	Both are standing on same base MN and between MN//SR.
3.	$\Delta \mathrm{PMN}+\Delta \mathrm{MNS}=\triangle \mathrm{QMN}+\Delta \mathrm{MNR}$	3.	Adding (1) and (2)
4.	$\Delta \mathrm{PNS}=\triangle \mathrm{QMR}$	4.	By whole part axiom
Proved			

QUESTION 18

In the figure, $\mathrm{AB} / / \mathrm{CD} / / \mathrm{EF}$. Prove that: $\triangle \mathrm{AED}=\triangle \mathrm{BFC}$
Solution
Given:
$\mathrm{AB} / / \mathrm{CD} / / \mathrm{EF}$

To prove: $\triangle \mathrm{AED}=\triangle \mathrm{BFC}$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{AEF}=\Delta \mathrm{BEF}$	1.	Both are standing on same base EF and between $\mathrm{AB} / / \mathrm{EF}$.
2.	$\Delta \mathrm{DEF}=\Delta \mathrm{CEF}$	2.	Both are standing on same base EF and between $\mathrm{CD} / / \mathrm{EF}$.
3.	$\Delta \mathrm{AEF}+\Delta \mathrm{DEF}=\Delta \mathrm{BEF}+\Delta \mathrm{CEF}$	3.	Adding (1) and (2)
4.	$\Delta \mathrm{AED}=\Delta \mathrm{BFC}$	4.	By whole part axiom
Proved			

QUESTION 19

In the figure, $\mathrm{EF} / / \mathrm{BD} / / \mathrm{GH}$. Prove that:
Area of quadrilateral BHDE = Area of quadrilateral BGDF

Solution

Given: EF // BD // GH
To prove: Area of quadrilateral $\mathrm{BHDE}=$ Area of quadrilateral BGDF
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{EBD}=\Delta \mathrm{FBD}$	1.	Both are standing on same base BD and between $\mathrm{EF} / / \mathrm{BD}$.
2.	$\Delta \mathrm{HBD}=\Delta \mathrm{GBD}$	2.	Both are standing on same base BD and between $\mathrm{GH} / / \mathrm{BD}$.
3.	$\Delta \mathrm{EBD}+\Delta \mathrm{HBD}=\Delta \mathrm{FBD}+\Delta \mathrm{GBD}$	3.	Adding (1) and (2)
4.	Quad. $\mathrm{HBDE}=$ Quad. BGDF	4.	By whole part axiom

QUESTION 20

In the adjoining figure, it is given that $\mathrm{AD} / / \mathrm{BC}$ and $\mathrm{BD} / / \mathrm{CE}$. Prove that: $\triangle \mathrm{ABC}=\triangle \mathrm{BDE}$.

Solution

Given:
$\mathrm{AD} / / \mathrm{BC}$ and $\mathrm{BD} / / \mathrm{CE}$
To prove: \quad Area of $\triangle \mathrm{ABC}=$ Area of $\triangle \mathrm{BDE}$
Construction: D and C are joined.
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{ABC}=\Delta \mathrm{DBC}$	1.	Both are standing on same base BC and between $\mathrm{AD} / / \mathrm{BC}$.
2.	$\Delta \mathrm{DBC}=\Delta \mathrm{DBE}$	2.	Both are standing on same base BD and between $\mathrm{CE} / / \mathrm{BD}$.
3.	$\Delta \mathrm{ABC}=\Delta \mathrm{BDE}$	3.	From statements (1) and (2)

QUESTION 21

In parallelogram $\mathrm{ABCD} ; \mathrm{E}$ is the mid-point of side CD and F is the mid-point of AE .
Prove that area of parallelogram $\mathrm{ABCD}=8 \times$ area of $\triangle \mathrm{AFD}$.

Solution

Given: \quad In $\square \mathrm{ABCD} ; \mathrm{E}$ is the mid-point of side CD and F is the mid-point of AE
To prove: Area of parallelogram $\mathrm{ABCD}=8 \times$ Area of $\triangle \mathrm{AFD}$.

Construction: A and C are joined.
Proof:

S.N.	Statements	S.N.	Reasons	
1.	$\Delta \mathrm{AFD}=\frac{1}{2} \Delta \mathrm{AED}$	1.	The median FD bisects the $\triangle \mathrm{AED}$.	
2.	$\Delta \mathrm{AED}=\frac{1}{2} \triangle \mathrm{ACD}$	2.	The median AE bisects the $\triangle \mathrm{ACD}$.	
3.	$\Delta \mathrm{ACD}=\frac{1}{2} \square \mathrm{ABCD}$	3.	The diagonal AC bisects the parallelogram ABCD.	
4.	$\Delta \mathrm{AFD}=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \square \mathrm{ABCD}$	4.	From statements (1), (2) and (3).	
5.	$\square \mathrm{ABCD}=8 \Delta \mathrm{AFD}$	5.	From statement (4)	
Proved				

QUESTION 22

In quadrilateral $\mathrm{ABCD} ; \mathrm{AB} / / \mathrm{CD}$ and $\mathrm{BC} / / \mathrm{AD} . \mathrm{P}$ is any point on the side AD and BP is produced to meet $C D$ produced at Q . Prove that the area of triangles APQ and PDC are equal.

Solution

Given: In quadrilateral $\mathrm{ABCD} ; \mathrm{AB} / / \mathrm{CD}$ and $\mathrm{BC} / / \mathrm{AD} . \mathrm{P}$ is any point on the side AD .
To prove: Area of $\triangle \mathrm{APQ}=$ Area of $\triangle \mathrm{PDC}$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{PBC}=\frac{1}{2} \square \mathrm{ABCD}$	1.	Both are standing on same base BC and between $\mathrm{AD} / / \mathrm{BC}$.
2.	$\Delta \mathrm{PAB}+\Delta \mathrm{PDC}=\frac{1}{2} \square \mathrm{ABCD}$	2.	Remaining parts of parallelogram ABCD.
3.	$\Delta \mathrm{ABQ}=\frac{1}{2} \square \mathrm{ABCD}$	3.	Both are standing on same base AB and between $\mathrm{AB} / / \mathrm{QC}$.
4.	$\Delta \mathrm{PAB}+\Delta \mathrm{PDC}=\Delta \mathrm{ABQ}$	4.	From statements (2) and (3)
5.	$\Delta \mathrm{PAB}+\Delta \mathrm{PDC}=\Delta \mathrm{APQ}+\Delta \mathrm{PAB}$ $\therefore \Delta \mathrm{PDC}=\Delta \mathrm{APQ}$	5.	$\Delta \mathrm{ABQ}=\Delta \mathrm{APQ}+\triangle \mathrm{PAB}$
Proved			

QUESTION 23

In a quadrilateral $A B C D$, side $B C$ is extended to point E in such a way that $A C / / D E$. Prove that: area of $\triangle \mathrm{ABE}=$ area of quad. ABCD
Solution
Given: AC // DE

To prove: area of $\triangle \mathrm{ABE}=$ area of quad. ABCD
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{DAC}=\triangle \mathrm{EAC}$	1.	Both are standing on AC and between DE//AC.
2.	$\Delta \mathrm{DAC}+\triangle \mathrm{ABC}=\triangle \mathrm{EAC}+\triangle \mathrm{ABC}$	2.	Adding $\Delta \mathrm{ABC}$ on both sides of statement (1)
3.	$\Delta \mathrm{ABE}=$ Quad. ABCD	3.	By whole part axiom
Proved			

QUESTION 24

In the figure, M is any point of side DC of $\square \mathrm{ABCD}$ and AM is produced to E such that $\mathrm{AM}=\mathrm{ME}$. Prove that the area of $\triangle \mathrm{ABE}=$ area of parallelogram ABCD .
Solution
Given: M is any point of side DC of $\square \mathrm{ABCD}$ and $\mathrm{AM}=\mathrm{ME}$.
To prove: area of $\triangle \mathrm{ABE}=$ area of $\square \mathrm{ABCD}$

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{MAB}=\frac{1}{2} \square \mathrm{ABCD}$	1.	Both are standing on AB and between $\mathrm{DC} / / \mathrm{AB}$.
2.	$\Delta \mathrm{MAB}=\frac{1}{2} \Delta \mathrm{ABE}$	2.	Median MB bisects $\triangle \mathrm{ABE}$
3.	$\Delta \mathrm{ABE}=\square \mathrm{ABCD}$	3.	From statements (1) and (2)

QUESTION 25

In the given figure, side $B C$ of parallelogram $A B C D$ is extended to a point M such that $\mathrm{BC}=\mathrm{CE}$. Write with reason that $\triangle \mathrm{BEF}$ and parallelogram ABCD are equal in area.

Solution
Given: BC of parallelogram ABCD is extended to a point M such that $\mathrm{BC}=\mathrm{CE}$.
To prove: area of $\triangle \mathrm{ABE}=$ area of $\square \mathrm{ABCD}$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{BEF}=\square \mathrm{ABCD}$	1.	The base of triangle is twice the base of parallelogram and they are lying between $\mathrm{AD} / / \mathrm{BE}$.
Proved			

QUESTION 26

ABCD is a parallelogram; M is the mid-point of the side EC of triangle BEC .
Prove that: Area of $\triangle \mathrm{EBM}=$ Area of $\Delta \mathrm{ADC}$.
Solution

Given: ABCD is a parallelogram; $\mathrm{EM}=\mathrm{MC}$
To prove: Area of $\triangle \mathrm{EBM}=$ Area of $\triangle \mathrm{ADC}$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{EBM}=\Delta \mathrm{CBM}$	1.	Median BM bisects $\Delta \mathrm{BEC}$
2.	$\Delta \mathrm{CBM}=\frac{1}{2} \square \mathrm{ABCD}$	2.	Both are standing on BC and between AD//BC.
3.	$\Delta \mathrm{ADC}=\frac{1}{2} \square \mathrm{ABCD}$	3.	Diagonal AC bisects $\square \mathrm{ABCD}$.
4.	$\Delta \mathrm{EBM}=\Delta \mathrm{ADC}$	4.	From statements (1), (2) and (3).
Proved			

QUESTION 27

M is the mid-point of the side QR of $\Delta \mathrm{PQR}$. If $\mathrm{PX} / / \mathrm{RY}$ and $\mathrm{PR} / / \mathrm{XY}$, prove that $\Delta X Y R=\frac{1}{2} \Delta \mathrm{PQR}$.

Solution

Given: $\mathrm{QM}=\mathrm{MR}, \mathrm{PX} / / \mathrm{RY}$ and $\mathrm{PR} / / \mathrm{XY}$

To prove: $\Delta \mathrm{XYR}=\frac{1}{2} \Delta \mathrm{PQR}$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{XYR}=\frac{1}{2} \square \mathrm{PXYR}$	1.	Diagonal XR bisects parallelogram PXYR.
2.	$\Delta \mathrm{PMR}=\frac{1}{2} \square \mathrm{PXYR}$	2.	Both are standing on PR and between XY//PR.
3.	$\Delta \mathrm{PMR}=\frac{1}{2} \Delta \mathrm{PQR}$	3.	Median PM bisects $\triangle \mathrm{PQR}$
4.	$\Delta \mathrm{XYR}=\frac{1}{2} \Delta \mathrm{PQR}$	4.	From statements (1), (2) and (3).

QUESTION 28

In the given figure; TONE is a parallelogram and E is the mid-point of side OW of triangle TWO. Prove that: $\triangle \mathrm{TWO}=2 \Delta \mathrm{ONE}$.
Solution
Given: TONE is a parallelogram and $\mathrm{OE}=\mathrm{EW}$

To prove: $\Delta \mathrm{TWO}=2 \Delta \mathrm{ONE}$
Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{TWO}=2 \Delta \mathrm{TOE}$	1.	Median TE bisects $\triangle \mathrm{TWO}$
2.	$\Delta \mathrm{TOE}=\Delta \mathrm{ONE}$	2.	Diagonal OE bisects \square TONE.
3.	$\Delta \mathrm{TWO}=2 \Delta \mathrm{ONE}$	3.	From statements (1) and (2).

QUESTION 29

In the given $\triangle \mathrm{ABC} ; \mathrm{D}, \mathrm{E}$ and F are the mid-points of BC, AD and BE respectively where $\mathrm{BE} / / \mathrm{DG}$. Prove: $\triangle \mathrm{ABC}=8 \Delta \mathrm{EFG}$
Solution
Given: \quad In $\triangle \mathrm{ABC} ; \mathrm{D}, \mathrm{E}$ and F are the mid-points of BC, AD and BE respectively, $\mathrm{BE} / / \mathrm{DG}$
To prove: $\quad \triangle \mathrm{ABC}=8 \Delta \mathrm{EFG}$
Construction: Join F and D

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{ABC}=2 \Delta \mathrm{ABD}$	1.	Median AD bisects $\triangle \mathrm{ABC}$.
2.	$\Delta \mathrm{ABD}=2 \Delta \mathrm{BED}$	2.	Median BE bisects $\triangle \mathrm{ABD}$.
3.	$\Delta \mathrm{BED}=2 \Delta \mathrm{DEF}$	3.	Median FD bisects $\Delta \mathrm{BED}$.
4.	$\Delta \mathrm{DEF}=\Delta \mathrm{EFG}$	4.	Both are standing on FE and between DG // FE
5.	$\Delta \mathrm{ABC}=2 \times 2 \times 2 \times \Delta \mathrm{EFG}=8 \Delta \mathrm{EFG}$	5.	From statements $(1),(2),(3)$ and (4)
Proved			

QUESTION 30

In $\triangle A B C$; D is the mid-point of side $A B$. If P is any point on $B C$ and Q is any point on $A D$ such that $C Q / / P D$, prove that the area of $\triangle \mathrm{BPQ}$ is half of the area of $\triangle \mathrm{ABC}$. Solution
Given:
In $\triangle \mathrm{ABC}$; D is the mid-point of side $\mathrm{AB}, \mathrm{CQ} / / \mathrm{PD}$. D
To prove: \quad Area of $\triangle \mathrm{BPQ}=\frac{1}{2}$ Area of $\triangle \mathrm{ABC}$
Construction: D and C are joined.

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\Delta \mathrm{QDP}=\Delta \mathrm{CDP}$	1.	Both are standing on DP and between $\mathrm{QC} / / \mathrm{DP}$.
2.	$\Delta \mathrm{QDP}+\Delta \mathrm{BPD}=\Delta \mathrm{CDP}+\Delta \mathrm{BPD}$	2.	Adding $\Delta \mathrm{BPD}$ on both sides of statement (1)
3.	$\Delta \mathrm{BPQ}=\Delta \mathrm{BDC}$	3.	By whole part axiom
4.	$\Delta \mathrm{BDC}=\frac{1}{2} \Delta \mathrm{ABC}$	4.	The median DC bisects the $\Delta \mathrm{ABC}$.
5.	$\Delta \mathrm{BPQ}=\frac{1}{2} \Delta \mathrm{ABC}$	5.	From statements (3) and (4).

QUESTION 31

In hexagon $\mathrm{ABCDEF} ; \mathrm{AB} / / \mathrm{FC} / / \mathrm{ED}$ and $\mathrm{AF} / / \mathrm{BE} / / \mathrm{CD}$. If the diagonals BE and CF intersect at O such that parallelograms ABOF and OCDE are equal in area, prove that $\mathrm{BC} / / \mathrm{FE}$.
Solution
Given: $\quad \mathrm{AB} / / \mathrm{FC} / / \mathrm{ED}$ and $\mathrm{AF} / / \mathrm{BE} / / \mathrm{CD}$, diagonals BE and CF intersect at O .
To prove: $\quad \mathrm{BC} / / \mathrm{FE}$
Construction: B, F and C, E are joined.

Proof:

S.N.	Statements	S.N.	Reasons
1.	$\square \mathrm{ABOF}=\square \mathrm{OCDE}$	1.	Given
2.	$\Delta \mathrm{BOF}=\frac{1}{2} \square \mathrm{ABOF}$	2.	The diagonals bisect the parallelogram
3.	$\Delta \mathrm{COE}=\frac{1}{2} \square \mathrm{OCDE}$	3.	The diagonals bisect the parallelogram
4.	$\Delta \mathrm{BOF}=\Delta \mathrm{COE}$	4.	From statements (1) and (2)
5.	$\Delta \mathrm{FBC}=\triangle \mathrm{EBC}$	5.	Adding $\triangle \mathrm{BOC}$ in statement (3)
6.	$\mathrm{BC} / / \mathrm{FE}$	6.	From statement $(4), \Delta^{s}$ on the same base BC have equal areas.
Proved			

QUESTION 32

In the parallelogram $A B C D$ given alongside, M is the mid-point of $C D$. Prove that: area of parallelogram ABCD and trapezium ABFE are equal in area.
Solution

Given:
ABCD is a parallelogram; M is the mid-point of CD
To prove: \quad Area of $\square \mathrm{ABCD}=$ Area of trapezium ABFE
Proof:

S.N.	Statements	S.N.	Reasons
1.	In $\triangle \mathrm{MED}$ and $\triangle \mathrm{MCF}$ (i) $\angle \mathrm{MED}=\angle \mathrm{CFM}$ (A) (ii) $\angle \mathrm{EDM}=\angle \mathrm{MCF}(\mathrm{A})$ (iii) $\mathrm{DM}=\mathrm{CM}(\mathrm{S})$	1.	(i) $\mathrm{ED} / / \mathrm{CF}$, alternate angles (ii) $\mathrm{ED} / / \mathrm{CF}$, alternate angles (iii) Given
2.	$\triangle \mathrm{MED} \cong \triangle \mathrm{MCF}$	2.	By A.A.S. axiom
3.	$\triangle \mathrm{MED}=\triangle \mathrm{MCF}$	3.	The areas of congruent triangles are equal.
4.	$\triangle \mathrm{MED}+$ Pent. ABCME $=\triangle \mathrm{MCF}+$ Pent. ABCME	4.	Adding Pentagon ABCME in (3)
5.	$\square \mathrm{ABCD}=$ Trapezium ABFE	5.	By whole part axiom
Proved			

QUESTION 33

In the trapezium $\mathrm{ABCD}, \mathrm{AB} / / \mathrm{DC}$ and P is the midpoint of BC .
Prove that $\triangle \mathrm{APD}=\frac{1}{2}$ trap. ABCD

Solution

Given: In the trapezium $\mathrm{ABCD}, \mathrm{AB} / / \mathrm{DC}$ and P is the midpoint of BC
To prove: $\quad \triangle \mathrm{APD}=\frac{1}{2}$ trap. ABCD
Construction: Produce DP and AB to meet at Q .

Proof:

S.N.	Statements	S.N.	Reasons
1.	In $\triangle \mathrm{DCP}$ and $\triangle \mathrm{PBQ}$ (i) $\angle \mathrm{PDC}=\angle \mathrm{PQB}$ (A) (ii) $\angle \mathrm{DCP}=\angle \mathrm{PBQ}$ (A) (iii) $\mathrm{CP}=\mathrm{BP}(\mathrm{S})$	1.	(i) $\mathrm{DC} / / \mathrm{AQ}$, alternate angles (ii) $\mathrm{DC} / / \mathrm{AQ}$, alternate angles (iii) Given
2.	$\triangle \mathrm{DCP} \cong \triangle \mathrm{PBQ}$	2.	By A.A.S. axiom
3.	$\triangle \mathrm{DCP}=\triangle \mathrm{PBQ}$	3.	The areas of congruent triangles are equal.
4.	$\Delta \mathrm{APQ}=\triangle \mathrm{APB}+\triangle \mathrm{PBQ}$	4.	By whole part axiom
5.	$\triangle \mathrm{APQ}=\triangle \mathrm{APB}+\triangle \mathrm{DCP}$	5.	From statements (3) and (4)
6.	$\triangle \mathrm{APD}=\triangle \mathrm{APQ}$	6.	Median AP bisects \triangle DAQ
7.	$\triangle \mathrm{APD}=\triangle \mathrm{APB}+\triangle \mathrm{DCP}$	7.	From statements (5) and (6)
8.	$\Delta \mathrm{APD}+\triangle \mathrm{APB}+\triangle \mathrm{DCP}=$ Trap. ABCD	8.	By whole part axiom
9.	$2 \Delta \mathrm{APD}=\text { Trap. } \mathrm{ABCD} \quad \therefore \triangle \mathrm{APD}=\frac{1}{2} \text { trap. } \mathrm{ABCD}$	9.	From statements (7) and (8)
Proved			

