

Dec 17, 2024

- **19.** The image of a function *f* is 4 times of its pre-image plus 5. The image of composite function of *g* and *f* is 8 times of its pre image plus 13. If $g_of(x) = 28$, find is the value of *x*.
- **20.** Find the maximum value of $P = 3x + 2y$ under the conditions: $x + y \ge 0$, $x y \le 0$, $x \ge -1$, $y \le 2$.
- **21.** Examine the continuity or discontinuity of $f(x) = \begin{cases} 4x 1 \\ 7x \end{cases}$ $\frac{1}{7x}$ for $x < 1$ for $x \ge 1$ at $x = 1$ by calculating left hand limit, right hand limit and functional values.
- **22.** If the men are sitting on the chair in a hall. The sum of legs of men and legs of chairs is 102 and 3 chairs are empty. Find the number of men and number of chairs by making linear equation and by using matrix method.
- **23.** Find the equation of the straight lines passing through the point $(-1, 2)$ and making an angle of 45[°] with the line $x - y = 1$.
- **24.** Prove that: $(\cos \alpha \cos \beta)^2 + (\sin \alpha + \sin \beta)^2 = 4\sin^2(\alpha^2 \beta^2)$ $\left(\frac{\alpha+\beta}{2}\right)$ 2
- **25.** If $A + B + C = 90^\circ$ then prove that: $sinA \cdot cosA + sinB \cdot cosB + sinC \cdot cosC = 2cosA \cdot cosB \cdot cosC$
- **26.** The angle of elevation of the top of the tower observed from 27 m and 75 m away from its foot on the same side are found to be complementary. Find the height of the tower.
- **27.** AABC with the vertices A(3, 6), B(4, 2) and C(3, 3) is mapped onto $\Delta A'B'C'$ such that A' (6, -3), B'(2, -4) and C'(3, -3). Find the 2×2 transformation matrix that represents this transformation. Also, which is the single transformation for this mapping?
- **28.** Find the mean deviation from mean and its coefficient.

29. Find the standard deviation from the given data.

- **30.** If *a, b* and *c* are in A.P and *x, y* and *z* are in G.P. Prove that: $x^{b-c} \times y^{c-a} \times z^{a-b} = (3x)^{\circ}$
- **31.** Find the equation of a circle having the center at $(-1, -2)$ and which has the same radius as the circle x^2 $+y^2 + 3x - 7y - 2 = 0.$
- **32.** Prove by vector method: The diagonals of rhombus bisect to each other at right angle.
- **33.** A quadrilateral having vertices P(0, 3), $O(-6, 1)$, R(-6, 5) and S(-1, 5) is reflected in the line $y = x$ followed by rotation about origin through $+90^\circ$. Find the coordinates of image of quadrilateral PQRS. Also present the object and final image on same graph paper.

The End

9. *Solution:*

Here, \overrightarrow{i} and \overrightarrow{j} and are unit vectors along X- axis and Y-axis respectively. Thus, the value of $\overrightarrow{i} \cdot \overrightarrow{j} = 0.$

VEDANTA EXCEL IN OPTIONAL MATHEMATICS Dec 17, 2024 **10.** *Solution:* Here, the image point P' of a point P with respect to a circle C with centre O and radius 'r' is called inversion point if OP \times OP' = r². **Group 'B'** $(8 \times 2 = 16)$ **11.** *Solution:* Here, $f(x) = x^3 - 3x^2 + kx + k$ and divisor, $g(x) = x + 2$ and remainder = 5. Comparing $x + 2$ with $x - a$, we get $a = -2$ Now, remainder $(R) = f(a)$ or, 5 $= (-2)^3 - 3(-2)^2 + k(-2) + k$ or, 5 $= -8 - 3(4) - 2k + k$ or, 5 $= -8 - 12 - k$ or, k = $-20-5$ or, $k = -25$ Hence, the required value of k is $=$ – 25. **12.** *Solution:* Here, $3x^3 + x^2 + x + 1 = (x - 1) \cdot Q(x) + R$ Comparing $x - 1$ with $x - a$, we get $a = 1$ Now, using synthetic division method, we get $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ 3 $\begin{array}{|c|c|c|c|}\n\hline\n& 3 & 4 & 5 \\
\hline\n& 4 & 5 & 6\n\end{array}$ Hence, quotient, $Q(x) = 3x^2 + 4x + 5$ and remainder $(R) = 6$. **13.** *Solution:* $p \left| 3 \right\rangle$ 4 3) ſ ſ Here, $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $\begin{pmatrix} 2 & 4 \end{pmatrix}$ and B = $\begin{pmatrix} 1 & 2 \end{pmatrix}$ $\overline{}$ $\overline{}$ J J 5 2 $p \left| 3 \right\rangle$ 4 3) ſ ſ Now, $AB = \begin{pmatrix}$ $\overline{}$ I $\overline{}$ $24/$ J 5 2 J $4p + 15 \quad 3p + 6$ ſ $=$ $\left($ $\overline{}$ $8 + 20$ 6 + 8 $\big)$ $4p + 15 \quad 3p + 6$ ſ $=$ $\Big($ $\overline{}$ $\big)$ 28 14 Since, AB is a singular matrix. $4p + 15$ 3p + 6 | So, $\Big|$ $28 \t 14 \t = 0$ $\overline{}$

Dec 17, 2024

14. *Solution:*

Here, the equations of lines are;

$$
y - (2+\sqrt{3}) x - 5 = 0 \dots (i)
$$

\n
$$
y - (2-\sqrt{3}) x - 2 = 0 \dots (ii)
$$

\nNow, slope of line (i) is m₁ = $\frac{\text{Coefficient of } x}{\text{Coefficient of } y}$
\n
$$
= \frac{-(2+\sqrt{3})}{1}
$$

\n
$$
= (2+\sqrt{3})
$$

\nAlso, slope of line (ii) is m₂ = $\frac{\text{Coefficient of } x}{\text{Coefficient of } y}$
\n
$$
= \frac{-(2-\sqrt{3})}{1}
$$

\n
$$
= (2-\sqrt{3})
$$

Let, θ be the angle of between the lines (i) and (ii).

Then, tan θ $m_1 - m_2$ $1 + m_1.m_2$ $=\pm$ $(2 + \sqrt{3}) - (2 - \sqrt{3})$ $1 + (2 + \sqrt{3})(2 - \sqrt{3})$ $=\pm$ $2 + \sqrt{3} - 2 + \sqrt{3}$ $1+2^2-(\sqrt{3})^2$ $=\pm$ $2\sqrt{3}$ $1 + 4 - 3$ $=\pm \sqrt{3}$

For acute angle, taking (+) sign, we get

$$
tan\theta = \sqrt{3}
$$

or, $tan\theta = tan60^\circ$

Dec 17, 2024

6 Vedanta Publication Pvt. Ltd., Vanasthali

Here, the inter-quartile range = 30 i.e., $Q_3 - Q_1 = 30$ and $Q_3 = 40$

We have, $Q_3 - Q_1 = 30$

Group 'C' $(11 \times 3 = 3)$

19. *Solution:*

Here, $f(x) = 4x + 5$, $f_o g(x) = 8x + 13$ and $g_o f(x) = 28$ Let, $g(x) = ax + b$ Now, $f_o g(x) = 8x + 13$ or, $f(ax + b) = 8x + 13$ or, $4(ax + b) + 5 = 8x + 13$ or, $4ax + 4b = 8x + 8$ Equating the coefficient of like terms, we get $4a = 8$ $\therefore a = 2$ $4b = 8$ \therefore $b = 2$

Thus, $g(x) = 2x + 2$ Again, $g(4x + 5) = 28$ or, $2(4x + 5) + 2 = 28$ or, $8x + 10 + 2 = 28$ or, $8x = 16$ or, $x = 2$

Hence, the required value of *x* is 2

Dec 17, 2024

Here,

20. *Solution:*

The equation of boundary line corresponding to $x + y \ge 0$ is $x + y = 0$

 \therefore $y = -x$

Taking (1, 0) as the testing point, we get

 $1 + 0 > 0$

or, $1 > 0$ which is true.

Hence the half- plane of $x + y \ge 0$ contains the testing point (1, 0).

Also, the equation of boundary line corresponding to $x -y \le 0$ is $x -y = 0$

 \therefore $y = x$

Taking (1, 0) as the testing point, we get

 $1 - 0 < 0$

or, $1 < 0$ which is false.

Hence the half- plane of $x - y \le 0$ does not contain the testing point (1, 0).

For, $x \ge -1$ $\therefore x = \{-1, 0, 1, ...\}$ with boundary line $x = -1$

For, $y \le 2$ \therefore $y = \{ \dots 0, 1, 2 \}$ with boundary line $y = 2$

From the above graph, the shaded region OABC is the feasible region with vertices O $(0, 0)$, A $(2, 2)$, B $(-1, 2)$ and C $(-1, 1)$.

8 Vedanta Publication Pvt. Ltd., Vanasthali

Dec 17, 2024

Again, tabulating the values of given objective function $P = 3x + 2y$ at each vertex of feasible region.

Hence, the maximum value of P $(x, y) = 3x + 2y$ is 10 at A $(2, 2)$

21. *Solution:*

Here, the given function is $f(x) = \begin{cases} 4x - 1 \\ 7x \end{cases}$ $\frac{1}{7x}$ for $x < 1$ for $x \ge 1$ at $x = 1$

Now, for functional value at $x = 1$, $f(x) = 7x$

Thus, $f(1) = 7 \times 1 = 7$

Also, for $x < 1$, $f(x) = 4x - 1$ and taking $x = 0.9, 0.99, 0.999, ...$

As *x* tends to 1 from left, $f(x)$ tends to 3.

Thus, left hand limit at $x = 1$ is 3 i.e., lim $\lim_{x \to 1^{-}} f(x) = 3$

Also, for $x > 1$, $f(x) = 7x$ and taking $x = 1.1, 1.01, 1.001, ...$

As *x* tends to 1 from right, $f(x)$ tends to 7.

Thus, right hand limit at $x = 1$ is 7 i.e., lim $\lim_{x \to 1^+} f(x) = 7$

Since,
$$
\lim_{x \to 1^+} f(x) = f(1)
$$
 but $\lim_{x \to 1^+} f(x) \neq \lim_{x \to 1^-} f(x)$.

Hence, the given function is discontinuous at $x = 1$.

22. *Solution:*

Let, the number of men be *x* and the number of chairs be *y*.

From the first condition; $2x + 4y = 102$ $\therefore x + 2y = 51$... (i)

From the second condition; $x = y - 3$ $\therefore x - y = -3$... (ii)

Now, expressing equations (i) and (ii) in matrix form. We get

Dec 17, 2024

$$
\begin{pmatrix} 1 & 2 \ 1 & -1 \end{pmatrix} \begin{pmatrix} x \ y \end{pmatrix} = \begin{pmatrix} 51 \ -3 \end{pmatrix}
$$

or, AX = B where A = $\begin{pmatrix} 1 & 2 \ 1 & -1 \end{pmatrix}$, B = $\begin{pmatrix} 51 \ -3 \end{pmatrix}$ and X = $\begin{pmatrix} x \ y \end{pmatrix}$

$$
\begin{pmatrix} 1 & 2 \ \vdots & \vdots \end{pmatrix}
$$
... (iii)
For A⁻¹
= -1 - 2
= -3
Since, |A| \neq 0; A⁻¹ exists and the given system has a unique solution.
A coin $A^{-1} = \frac{1}{2} \text{ Adient of } A$

Again,
$$
A^{-1} = \frac{1}{|A|} \text{Adjoint of A}
$$

$$
= \frac{1}{-3} \begin{pmatrix} -1 & -2 \\ -1 & 1 \end{pmatrix}
$$

Putting the value of A^{-1} in equation (iii), we get

$$
\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{-3} \begin{pmatrix} -1 & -2 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 51 \\ -3 \end{pmatrix}
$$

or,
$$
\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{-3} \begin{pmatrix} -51+6 \\ -51-3 \end{pmatrix}
$$

or,
$$
\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{-3} \begin{pmatrix} -45 \\ -54 \end{pmatrix}
$$

or,
$$
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 15 \\ 18 \end{pmatrix}
$$

Equating the corresponding elements, we get

 $x = 15$ and $y = 18$

Hence, the required number of men is 15 and the number of chairs is 18.

 $\big)$ $\overline{}$

23. *Solution:*

Here,

The equation of given line BC is $x - y = 1$... (i)

$$
\therefore \text{ Slope (m1)} = -\frac{\text{coefficient of } x}{\text{coefficient of } y}
$$

$$
= -\frac{1}{-1}
$$

Let, m_2 be the slope of the line AB.

 $= 1$

 $A(-1,2)$

45

Dec 17, 2024

 $\angle ABC$ (θ) = 45^o

 $1 + m_2 = -(1 - m_2)$ or, $1 + m_2 = -1 + m_2$ or, $0.m_2 = -2$ \therefore m₂ 2 0

Case-I

Slope $(m_2) = 0$ and passing point = A $(-1, 2) \rightarrow (x_1, y_1)$ Equation of required line AB is given by

$$
y-y_1
$$
 = $m_2 (x-x_1)$
or, $y-2$ = 0(x + 1)
or, $y-2$ = 0

Case-II

Slope $(m_2) = -$ 2 $\frac{2}{0}$ and passing point = A (-1, 2) \rightarrow (x_1, y_1)

Equation of required line AB is given by

$$
y - y_1 = m_2 (x - x_1)
$$

or, $y - 2 = -\frac{2}{0} (x + 1)$
or, 0 = x + 1
or, $x + 1 = 0$
Hence, the equation of line AB is $y - 2 = 0$ or $x + 1 = 0$

Dec 17, 2024

Here,
\nL.H.S. =
$$
(\cos\alpha - \cos\beta)^2 + (\sin\alpha + \sin\beta)^2
$$

\n
$$
= (2\sin\frac{\alpha + \beta}{2} \cdot \sin\frac{\alpha - \beta}{2})^2 + (2\sin\frac{\alpha + \beta}{2} \cdot \cos\frac{\alpha - \beta}{2})^2
$$
\n
$$
= 4\sin^2\left(\frac{\alpha + \beta}{2}\right) \cdot \sin^2\left(\frac{\alpha - \beta}{2}\right) + 4\sin^2\left(\frac{\alpha + \beta}{2}\right) \cdot \cos^2\left(\frac{\alpha - \beta}{2}\right)
$$
\n
$$
= 4\sin^2\left(\frac{\alpha + \beta}{2}\right) \left[\sin^2\left(\frac{\alpha - \beta}{2}\right) + \cos^2\left(\frac{\alpha - \beta}{2}\right)\right]
$$
\n
$$
= 4\sin^2\left(\frac{\alpha + \beta}{2}\right) \times 1
$$
\n
$$
= 4\sin^2\left(\frac{\alpha + \beta}{2}\right)
$$
\n
$$
= R.H.S.
$$
\n25. Solution:
\nHere, A + B + C = 90°
\nor, A + B = 90° - C
\nTaking sin and cos on both sides successively, we get
\n
$$
\sin(A + B) = \sin(90° - C) = \cos C
$$
\n
$$
\cos(A + B) = \cos(90° - C) = \sin C
$$
\nNow, L.H.S. = $\sin A \cdot \cos A + \sin B \cdot \cos B + \sin C \cdot \cos C$
\n
$$
= \frac{1}{2} (2\sin A \cdot \cos A + 2\sin B \cdot \cos B) + \sin C \cdot \cos C
$$
\n
$$
= \frac{1}{2} (\sin 2A + \sin 2B) + \sin C \cdot \cos C
$$
\n
$$
= \frac{1}{2} \times 2\sin\left(\frac{2A + 2B}{2}\right) \cdot \cos\left(\frac{2A - 2B}{2}\right) + \sin C \cdot \cos C
$$
\n
$$
= \cos C \cdot \cos (A - B) + \sin C \cdot \cos C
$$
\n
$$
= \cos C \cdot \cos (A - B) + \sin C \cdot \cos C
$$
\n
$$
= \cos C [\cos (A - B) + \sin C] = \cos C [\cos (A - B) + \cos (
$$

 $= cosC (cos A. cos B + sin A. sin B + cos A. cos B - sin A. sin B)$

 $= cosC \times 2cosA. cosB$

 $= 2 \cos A \cdot \cos B \cdot \cos C$

$$
= R.H.S.
$$

Hence, proved

Dec 17, 2024

26. *Solution:*

Let, AB be the height of tower, C and D be the observation points. \angle BCA and \angle BDA be the angles of elevation of the top of the tower observed from the places C and D respectively. Then, $BC = 27$ m $BD = 75 m$ Suppose, $\angle BCA = \theta$, then $\angle BDA = 90^\circ - \theta$ $AB = x \text{ m (say)}$

Now,

From right angled triangle ABC; tan $\theta =$ AB BC

or,
$$
\tan\theta = \frac{x}{27}
$$
 ...(i)

Again,

From right angled triangle ADC; $tan(90^\circ - \theta) =$ AB BD

or,
$$
cot\theta = \frac{x}{75}
$$
 ...(ii)

Multiplying (i) and (ii), we get

$$
\tan\theta \times \cot\theta = \frac{x}{27} \times \frac{x}{75}
$$

or, 1 = $\frac{x^2}{2025}$
or, x^2 = 2025
or, x = $\sqrt{2025}$ = 45

Hence, the height of the tower is 45 m.

27. *Solution:*

Here,

$$
\text{Object} = \Delta \text{ABC} = \begin{pmatrix} \text{A} & \text{B} & \text{C} \\ 3 & 4 & 3 \\ 6 & 2 & 3 \end{pmatrix}
$$
\n
$$
\text{Image} = \Delta \text{AB'C'} = \begin{pmatrix} \text{A'} & \text{B'} & \text{C'} \\ 6 & 2 & 3 \\ -3 & -4 & -3 \end{pmatrix}
$$

Dec 17, 2024

Hence, the single transformation for this mapping is the rotation through -90° about origin.

i.e., P(*x, y*) P (*y, – x*)

Dec 17, 2024

28. *Solution:*

Here, computation of the mean deviation from the mean:

Now.

Mean
$$
(\overline{X}) = \frac{\sum fm}{N} = \frac{328}{40} = 8.2
$$

Also, M.D. from mean $= \frac{\sum f |m - \overline{X}|}{N}$

N = 184 40 $= 4.6$ Again, coefficient of $M.D. =$ M.D. from mean Mean = 4.6 8.2

 $= 0.5609$

Hence, the mean deviation is 4.6 and its coefficient is 0.5609.

29. *Solution:*

Here, changing the given data in continuous series and calculating standard deviation:

Dec 17, 2024

Now, S.D. (σ) =
$$
\sqrt{\frac{fm^2}{N} - (\frac{fm}{N})^2}
$$

\n= $\sqrt{\frac{43050}{50} - (\frac{1350}{50})^2}$
\n= $\sqrt{861 - 729}$
\n= $\sqrt{132}$
\n= 11.489
\nHence, the required standard deviation is 11.489.
\nGroup 'D' (4 × 4 = 16)
\n30. Solution:
\nHere, *a*, *b* and *c* are in A.P $\therefore b = \frac{a + c}{2}$ or, $a = 2b - c$
\nand *x*, *y* and *z* are in G.P. $\therefore y = \sqrt{xz}$ or, $y^2 = xz$
\nL.H.S. = $x^{b-c} \times y^{c-(2b-c)} \times z^{2b-c-b}$
\n= $x^{b-c} \times y^{c-(2b-c)} \times z^{2b-c-b}$
\n= $(xz)^{b-c} \times y^{2c-2b}$
\n= $(yz)^{b-c} \times y^{2c-2b}$
\n= $y^{2b-2c} \times y^{2c-2b}$
\n= $y^{2b-2c+2c-2b}$
\n= y^2
\n= 1
\nR.H.S. = $(3x)^5$
\n= 1
\nHence, $x^{b-c} \times y^{c-a} \times z^{a-b} = (3x)^6$
\n= 1
\nHence, $x^{b-c} \times y^{c-a} \times z^{a-b} = (3x)^6$

Here, the equation of a given circle is $x^2 + y^2 + 3x - 7y$

$$
-2=0
$$

Comparing it with $x^2 + y^2 + 2gx + 2fy + c = 0$, we get

$$
2g = 3 \qquad \therefore g = \frac{3}{2}
$$

$$
2f = -7 \qquad \therefore f = -\frac{7}{2}
$$

 $c = -2$

Dec 17, 2024

For required circle, center $(h, k) = (-1, -2)$ and radius $(r) =$ 33 2 Thus, the equation of circle is given by $(x-h)^2 + (y-k)^2 = r^2$

$$
(x + 1)^2 + (y + 2)^2 = \left(\sqrt{\frac{33}{2}}\right)^2
$$

or, $x^2 + 2x + 1 + y^2 + 4y + 4 = \frac{33}{2}$
or, $2x^2 + 4x + 2 + 2y^2 + 8y + 8 = 33$
i.e., $2x^2 + 2y^2 + 4x + 8y - 23 = 0$, which is required equation.

32. *Solution:*

Here,

Given: In rhombus ABCD; AC and BD are the diagonals.

To prove: (i) Diagonals AC and BD bisect each other

(ii) AC and BD are perpendicular to each other

i.e.
$$
\overrightarrow{AC.BD} = 0
$$

Assumption: M is the mid-point of diagonal AC and N is the mid-point of diagonal BD Proof:

- (i) \Rightarrow $BM =$ 1 $\frac{1}{2}$ ^{$\frac{1}{2}$} \Rightarrow $BA +$ \Rightarrow [By mid-point theorem]
- (ii) \Rightarrow $BN =$ 1 $\frac{1}{2}$ \Rightarrow [Being N the mid-point of diagonal BD] **=** 1 $\frac{1}{2}$ ^{$\frac{1}{2}$} \Rightarrow $BA +$ \Rightarrow

$$
B\acute{C}
$$
 [By parallelogram law of vector addition]

From (i) and (ii), we get \Rightarrow $BM =$ \Rightarrow BNi.e., mid-point M of diagonal AC and N of diagonal BD coincide. Therefore, the diagonals of rhombus bisect each other. Also,

(iii) In $\triangle ABC$; \rightarrow $AC =$ \rightarrow $AB +$ \Rightarrow [By Δ law of vector addition]

Dec 17, 2024

(iv) In $\triangle BCD$; $\overline{\rightarrow}$ $BD = ($ $\overline{\rightarrow}$ $BC +$ $\overline{}$ CD [By Δ law of vector addition] Again, \rightarrow AC . \Rightarrow $BD = ($ \Rightarrow $AB +$ \Rightarrow BC).(\Rightarrow $BC +$ \Rightarrow CD) = (\rightarrow $AB +$ \Rightarrow BC).(\Rightarrow $BC +$ \Rightarrow BA) = (\rightarrow $AB +$ \Rightarrow BC).(\Rightarrow $BC \rightarrow$ AB) $= BC^2 - AB^2$ $= BC^2 - BC^2$ $[AB = BC]$

Since, \rightarrow AC . \Rightarrow $BD = 0$. So, AC $\perp BD$

 $= 0$

Hence, the diagonals of rhombus bisect each other at right angle.

33. *Solution:*

Here,

The vertices of a quadrilateral PQRS are $P(0, 3)$, $Q(-6, 1)$, $R(-6, 5)$ and $S(-1, 5)$. Now,

Reflecting the quadrilateral PQRS about the line $y = x$, we get

Thus, P' $(3, 0)$, O' $(1, -6)$, R' $(5, -6)$ and S' $(5, -1)$ are the vertices of image quadrilateral P'O'R'S'.

Again, rotating the quadrilateral P'Q'R'S' through $+90^{\circ}$ about origin, we get

At last, representing the quadrilateral PORS and its final image quadrilateral P'' , O'' , R'' and S'' on the same graph paper

The End

19 Vedanta Publication Pvt. Ltd., Vanasthali